Optimization Under Uncertainty

ORI397-18928

Lecture Notes Fall 2016

Grani A. Hanasusanto

Graduate Program in Operations Research and Industrial Engineering The University of Texas at Austin

Chapter 1

Background Material

In this chapter, we review some of the relevant concepts that will be used throughout the course.

Notation: We denote the set of extended real numbers as $\mathbb{R} = \mathbb{R} \cup \{-\infty, +\infty\}$. We use lower-case bold face letters to denote vectors and upper-case bold face letters to denote matrices. For any $I \in \mathbb{N}$, we define [I] as the index set $\{1, \ldots, I\}$. We denote by I the identity matrix and by **e** the vector of all ones. Their dimensions will be clear from the context. All random variables are designated by tilde signs $(e.g., \tilde{\xi})$, while their realizations are denoted without tildes $(e.g., \xi)$. The characteristic function of a set S is defined as $\chi_{S}(\xi) = 0$ if $\xi \in S$; $= \infty$ otherwise.

1.1 Convex Optimization

A large class of decision making problems can be formulated as a formal mathematical optimization model of the form

minimize
$$f_0(\boldsymbol{x})$$

subject to $\boldsymbol{x} \in \mathbb{R}^N$ (P)
 $f_i(\boldsymbol{x}) \le 0 \quad \forall i \in [I].$

Here $f_0 : \mathbb{R}^N \to \overline{\mathbb{R}}$ is the objective function (cost, negative profit, etc.) that we seek to minimize, and $f_i : \mathbb{R}^N \to \overline{\mathbb{R}}, i \in [I]$, are constraint functions (budget, capacity, etc.) that define the feasible region of the decision variable \boldsymbol{x} . Note the constraint system in (**P**) is equivalent to a single constraint given by

$$\max_{i\in[I]}f_i(\boldsymbol{x})\leq 0.$$

We will find this representation useful when we delve further into optimization under uncertainty.

Definition 1 (Domain). The domain of a function f is defined as

$$\operatorname{dom}(f) = \left\{ \boldsymbol{x} \in \mathbb{R}^N : f(\boldsymbol{x}) < +\infty \right\}.$$

For a cleaner presentation, we henceforth encapsulate all constraint functions into the set $\mathcal{X} \subseteq \mathbb{R}^N$ defined as

$$\mathcal{X} = \left\{ \boldsymbol{x} \in \mathbb{R}^N : f_i(\boldsymbol{x}) \le 0 \; \forall i \in [I] \right\}$$

Definition 2 (Infimum). The infimum of a minimization problem (**P**) is the largest number z^* such that $f_0(\boldsymbol{x}) \geq z^* \ \forall \boldsymbol{x} \in \mathcal{X}$. We denote the infimum of (**P**) as $\inf(\mathbf{P}) \in \overline{\mathbb{R}}$.

Definition 3 (Global Minima). A point $\mathbf{x}^* \in \mathcal{X}$ is called a global minima for (**P**) if $f_0(\mathbf{x}) \ge f_0(\mathbf{x}^*) \ \forall \mathbf{x} \in \mathcal{X}$. We further call $f_0(\mathbf{x}^*)$ a global minimum of (**P**).

Definition 4 (Local Minima). A point $\mathbf{x}^* \in \mathcal{X}$ is called a local minima for (**P**) if there exists $\delta > 0$ such that $f_0(\mathbf{x}) \ge f_0(\mathbf{x}^*) \ \forall \mathbf{x} \in \mathcal{X}$ with $\|\mathbf{x} - \mathbf{x}^*\| \le \delta$. We further call $f_0(\mathbf{x}^*)$ a local minimum of (**P**).

Definition 5 (Feasibility). The problem (**P**) is called feasible if $\mathcal{X} \neq \emptyset$, in which case $\inf(\mathbf{P}) < +\infty$. Otherwise, it is called infeasible and $\inf(\mathbf{P}) = +\infty$.

Definition 6 (Unbounded Problem). The problem (**P**) is called unbounded if $\inf(\mathbf{P}) = -\infty$.

In this course, we mostly concern ourselves with *convex optimization*, in which the functions f_0 and f_i , $i \in [I]$, have convex domains and satisfy the convexity property

$$f_i(\lambda \boldsymbol{x} + (1-\lambda)\boldsymbol{y}) \le \lambda f_i(\boldsymbol{x}) + (1-\lambda)f_i(\boldsymbol{y}) \qquad \forall \lambda \in [0,1], \ \forall \boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom}(f_i),$$

for all $i \in \{0\} \cup [I]$.

Definition 7 (Proper Convex Function). A convex function f is called proper if dom(f) is non-empty and $f(\boldsymbol{x}) > -\infty$ for every $\boldsymbol{x} \in \mathbb{R}^N$.

Operations that preserve convexity are:

- 1. Composition with affine functions: If f is convex then f(Ax + b) is also convex.
- 2. Non-negative weighted sum: if f_1, \ldots, f_K are convex functions and w_1, \ldots, w_K are non-negative numbers, then the combination $w_1f_1 + \cdots + w_Kf_K$ is convex. We can generalize this result to the integral $F(\boldsymbol{x}) = \int_{\mathcal{Y}} w(\boldsymbol{y}) f(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y}$.
- 3. Pointwise supremum: If f(x, y) is convex in x for every fixed $y \in \mathcal{Y}$, then the pointwise supremum $\sup_{u \in \mathcal{Y}} f(x, y)$ yields a convex function.

4. Partial minimization: If f(x, y) is convex in (x, y) and C is a convex set then the function $F(x) = \inf\{f(x, y) : y \in C\}$ is convex in x.

If f is differentiable then f is convex if and only if

$$f(\boldsymbol{y}) \geq f(\boldsymbol{x}) +
abla f(\boldsymbol{x})^{ op} (\boldsymbol{y} - \boldsymbol{x}) \qquad orall \boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom}(f),$$

where the gradient ∇f is defined as

$$abla f(oldsymbol{x}) = egin{bmatrix} rac{\partial f(oldsymbol{x})}{\partial x_1} \ \cdots \ rac{\partial f(oldsymbol{x})}{\partial x_N} \end{bmatrix}.$$

For every instance of (\mathbf{P}) we associate with it a *dual* problem defined as

$$\begin{array}{ll} \text{maximize} & g(\boldsymbol{\theta}) \\ \text{subject to} & \boldsymbol{\theta} \in \mathbb{R}_{+}^{I}, \end{array} \tag{D}$$

where $g(\boldsymbol{\theta}) = \inf_{\boldsymbol{x} \in \mathbb{R}^N} f_0(\boldsymbol{x}) + \sum_{i \in [I]} \theta_i f_i(\boldsymbol{x})$. We can similarly define the optimal value of the maximization problem (**D**) as sup (**D**).

Proposition 1. We have $\inf(\mathbf{P}) \ge \sup(\mathbf{D})$.

Proof. For every $\boldsymbol{x} \in \mathcal{X}$ and $\boldsymbol{\theta} \in \mathbb{R}_+^I$ we have

$$f_0(oldsymbol{x}) \geq f_0(oldsymbol{x}) + \sum_{i \in [I]} heta_i f_i(oldsymbol{x}),$$

since $f_i(\boldsymbol{x}) \leq 0, i \in [I]$. Taking infimum over \mathcal{X} on both sides, we find

$$egin{aligned} &\inf\left\{f_0(oldsymbol{x}):oldsymbol{x}\in\mathcal{X}
ight\} &\geq \inf_{oldsymbol{x}\in\mathcal{X}}f_0(oldsymbol{x})+\sum_{i\in[I]} heta_if_i(oldsymbol{x})\ &\geq \inf_{oldsymbol{x}\in\mathbb{R}^N}f_0(oldsymbol{x})+\sum_{i\in[I]} heta_if_i(oldsymbol{x})=g(oldsymbol{ heta}) \end{aligned}$$

where the second inequality holds because we have enlarged the feasible set of x from \mathcal{X} to the full space \mathbb{R}^N . As the arising inequality holds for any $\theta \in \mathbb{R}^I_+$, the desired relation is thus obtained by taking the supremum of the right-hand side expression. Thus the claim follows.

For convex optimization problems, we can often have strong duality where $\inf(\mathbf{P}) = \sup(\mathbf{D})$. A sufficient condition is described in the following theorem.

Theorem 1 (Slater's Constraint Qualification). Let $\mathcal{I} \subseteq [I]$ be the set of indices for which the functions f_i , $i \in \mathcal{I}$, are non-affine in \mathbf{x} . If there exists \mathbf{x} such that $f_i(\mathbf{x}) < 0$, $i \in \mathcal{I}$, and $f_i(\mathbf{x}) \leq 0$, $i \in [I] \setminus \mathcal{I}$, then $\inf(\mathbf{P}) = \sup(\mathbf{D})$. A subclass of convex optimization problems that will be of particular interest to us is *linear optimization* or *linear programming* (LP) problems, in which the functions f_0 and f_i , $i \in [I]$, are affine in \boldsymbol{x} . In this case, we can without loss of generality define $f_0(\boldsymbol{x}) = \boldsymbol{c}^\top \boldsymbol{x}$ and $f_i(\boldsymbol{x}) = \boldsymbol{a}_i^\top \boldsymbol{x} - b_i$, $i \in [I]$, for some problem specific vectors $\boldsymbol{c} \in \mathbb{R}^N$, $\boldsymbol{a}_i \in \mathbb{R}^N$, $i \in [I]$, and scalars $b_i \in \mathbb{R}$, $i \in [I]$. This gives rise to the optimization problem

$$\begin{array}{ll} \text{minimize} & \boldsymbol{c}^{\top}\boldsymbol{x} \\ \text{subject to} & \boldsymbol{x} \in \mathbb{R}^{N} \\ & \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b}. \end{array} \end{array}$$

To formulate the dual of this problem, we derive the explicit expression for $g(\theta)$ in (D)

$$g(\boldsymbol{\theta}) = \inf_{\boldsymbol{x} \in \mathbb{R}^N} \left[\boldsymbol{c}^\top \boldsymbol{x} + \sum_{i \in [I]} \theta_i \boldsymbol{a}_i^\top \boldsymbol{x} - \sum_{i \in [I]} \theta_i b_i \right] = -\boldsymbol{b}^\top \boldsymbol{\theta} + \inf_{\boldsymbol{x} \in \mathbb{R}^N} \left[\boldsymbol{c}^\top \boldsymbol{x} + \sum_{i \in [I]} \theta_i \boldsymbol{a}_i^\top \boldsymbol{x} \right].$$

The last minimization problem evaluates to $-\infty$ if $\mathbf{A}^{\top} \boldsymbol{\theta} \neq -\mathbf{c}$. Thus, for the dual problem (**D**) to be feasible, necessarily we must have $\mathbf{A}^{\top} \boldsymbol{\theta} = -\mathbf{c}$. This yields the explicit dual linear optimization problem

maximize
$$-\boldsymbol{b}^{\top}\boldsymbol{\theta}$$

subject to $\boldsymbol{\theta} \in \mathbb{R}^{I}_{+}$ (D-LP)
 $\boldsymbol{A}^{\top}\boldsymbol{\theta} = -\boldsymbol{c}.$

For linear optimization problems, feasibility of either the primal problem (\mathbf{P} -LP) or the dual problem (\mathbf{D} -LP) is sufficient to guarantee strong duality.

Theorem 2 (LP Strong Duality). If there exists $\boldsymbol{x} \in \mathbb{R}^N$ such that $\boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b}$ or if there exists $\boldsymbol{\theta} \in \mathbb{R}^I_+$ such that $\boldsymbol{A}^{\top}\boldsymbol{\theta} = -\boldsymbol{c}$ then $\inf(\mathbf{P}\text{-LP}) = \sup(\mathbf{D}\text{-LP}).$

1.2 Probability Theory

In a random experiment, the sample space Ω is the set containing all posible outcomes $\boldsymbol{\xi} \in \Omega$. Typically, we set $\Omega = \mathbb{R}^{K}$. All subsets $\mathcal{A} \subseteq \Omega$ are called events. A probability measure \mathbb{P} assigns every event $\mathcal{A} \subseteq \Omega$ a probability $\mathbb{P}(\tilde{\boldsymbol{\xi}} \in \mathcal{A}) \in [0, 1]$. Without loss of generality, we may henceforth use the shorthand notation $\mathbb{P}(\mathcal{A}) = \mathbb{P}(\tilde{\boldsymbol{\xi}} \in \mathcal{A})$. The probability measure \mathbb{P} satisfies the following properties:

- $\mathbb{P}(\Omega) = 1$, $\mathbb{P}(\emptyset) = 0$.
- For any disjoint sets $\mathcal{A}, \mathcal{B} \subseteq \Omega$, we have $\mathbb{P}(\mathcal{A} \cup \mathcal{B}) = \mathbb{P}(\mathcal{A}) + \mathbb{P}(\mathcal{B})$.
- Let \mathcal{A}^c be the complement of $\mathcal{A} \subseteq \Omega$ (*i.e.*, $\mathcal{A} \cap \mathcal{A}^c = \emptyset$ and $\mathcal{A} \cup \mathcal{A}^c = \Omega$). Then, $\mathbb{P}(\mathcal{A}) + \mathbb{P}(\mathcal{A}^c) = \mathbb{P}(\mathcal{A} \cup \mathcal{A}^c) = \mathbb{P}(\Omega) = 1$.
- If $\mathcal{A} \subseteq \mathcal{B} \subseteq \Omega$, then $\mathbb{P}(\mathcal{A}) \leq \mathbb{P}(\mathcal{B})$ and $\mathbb{P}(\mathcal{B} \setminus \mathcal{A}) = \mathbb{P}(\mathcal{B}) \mathbb{P}(\mathcal{A})$.

• If $\mathcal{A}, \mathcal{B} \subseteq \Omega$ arbitrary, then $\mathbb{P}(\mathcal{A} \cup \mathcal{B}) = \mathbb{P}(\mathcal{A}) + \mathbb{P}(\mathcal{B}) - \mathbb{P}(\mathcal{A} \cap \mathcal{B})$.

Definition 8 (Support). The smallest closed set $\Xi \subseteq \Omega$ such that $\mathbb{P}(\Xi) = 1$ is called the support of $\tilde{\xi}$.

Definition 9 (Conditional Probability). If $\mathcal{A}, \mathcal{B} \subseteq \Omega$ are two events, then

$$\mathbb{P}(\mathcal{A}|\mathcal{B}) = \frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{B})}$$

is the conditional probability of \mathcal{A} given \mathcal{B} , which is well defined if $\mathbb{P}(\mathcal{B}) > 0$.

Definition 10 (Independence). If $\mathcal{A}, \mathcal{B} \subseteq \Omega$ are two events and $\mathbb{P}(\mathcal{A} \cap \mathcal{B}) = \mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B})$, then \mathcal{A} and \mathcal{B} are called independent.

If \mathcal{A} and \mathcal{B} are independent then

$$\mathbb{P}(\mathcal{A}|\mathcal{B}) = rac{\mathbb{P}(\mathcal{A})\mathbb{P}(\mathcal{B})}{\mathbb{P}(\mathcal{B})} = \mathbb{P}(\mathcal{A}).$$

Theorem 3 (Law of Total Probability). Let A_1, A_2, \ldots, A_I be mutually exclusive and collectively exhaustive events such that:

- $\mathcal{A}_i \cap \mathcal{A}_j = \emptyset$ for all $i \neq j$.
- $\cup_{i \in [I]} \mathcal{A}_i = \Omega.$

Then for any event \mathcal{B} , we have

$$\mathbb{P}(\mathcal{B}) = \mathbb{P}(\mathcal{B} \cap \mathcal{A}_1) + \dots + \mathbb{P}(\mathcal{B} \cap \mathcal{A}_I)$$

= $\mathbb{P}(\mathcal{B}|\mathcal{A}_1)\mathbb{P}(\mathcal{A}_1) + \dots + \mathbb{P}(\mathcal{B}|\mathcal{A}_I)\mathbb{P}(\mathcal{A}_I).$

A discrete random variable $\tilde{\boldsymbol{\xi}}$ is described by a finite number of scenarios $\boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_S$ with occurence probabilities p_1, \ldots, p_S , that satisfies $\sum_{s \in [S]} p_s = 1$ and

$$p_s = \mathbb{P}(\tilde{\boldsymbol{\xi}} = \boldsymbol{\xi}_s) \qquad \forall s \in [S].$$

A continuous random variable $\tilde{\boldsymbol{\xi}}$ is described by a probability density function $p(\boldsymbol{\xi})$ satisfying

$$\mathbb{P}(\mathcal{A}) = \int_{\mathcal{A}} p(\boldsymbol{\xi}) \mathrm{d}\boldsymbol{\xi},$$

for any events $\mathcal{A} \subseteq \Omega$. Two discrete univariate random variables $\tilde{\xi}_1$ and $\tilde{\xi}_2$ are called independent if the probability of any outcome factors into the form

$$p_s(\boldsymbol{\xi}) = p_x(\xi_{1,s})p_y(\xi_{2,s}).$$

Two continuous univariate random variables $\tilde{\xi}_1$ and $\tilde{\xi}_2$ are called independent if the joint density function factors into the form

$$p(\boldsymbol{\xi}) = p_x(\xi_1) p_y(\xi_2).$$

Definition 11 (Expectation). Expectation of a univariate random variable $\tilde{\xi}$ is defined as

$$\mathbb{E}_{\mathbb{P}}[\tilde{\xi}] = \int_{\Omega} \xi \, \mathbb{P}(\mathrm{d}\xi). \tag{1.1}$$

For a discrete random variable the expectation (1.1) reduces to $\sum_{s \in [S]} p_s \xi_s$ while for a continuous random variable it reduces to $\int_{\Omega} \xi p(\xi) d\xi$.

Definition 12 (Generalized Expectation). For a function $f : \mathbb{R}^K \to \mathbb{R}$ of a random vector $\tilde{\xi}$, its expectation is given by

$$\mathbb{E}_{\mathbb{P}}[f(\tilde{\boldsymbol{\xi}})] = \int_{\Omega} f(\boldsymbol{\xi}) \ \mathbb{P}(\mathrm{d}\boldsymbol{\xi}).$$

Definition 13 (Variance). Variance of a random variable $\tilde{\xi}$ is defined as

$$\operatorname{Var}(\tilde{\xi}) = \mathbb{E}_{\mathbb{P}}\left[\left(\tilde{\xi} - \mathbb{E}_{\mathbb{P}}[\tilde{\xi}]\right)^2\right],$$

while its standard deviation is defined as $\sigma(\tilde{\xi}) = \sqrt{\operatorname{Var}(\tilde{\xi})}$.

Definition 14 (Covariance). Covariance of two random variables $\tilde{\xi}_1$ and $\tilde{\xi}_2$ is defined as

$$\operatorname{Cov}(\tilde{\xi}_1, \tilde{\xi}_2) = \mathbb{E}_{\mathbb{P}}\left[\left(\tilde{\xi}_1 - \mathbb{E}_{\mathbb{P}}[\tilde{\xi}_1]\right)\left(\tilde{\xi}_2 - \mathbb{E}_{\mathbb{P}}[\tilde{\xi}_2]\right)\right],$$

while their correlation is defined as

$$\rho(\tilde{\xi}_1, \tilde{\xi}_2) = \frac{\operatorname{Cov}(\xi_1, \xi_2)}{\sigma(\tilde{\xi}_1)\sigma(\tilde{\xi}_2)}.$$

If $\tilde{\xi}_1$ and $\tilde{\xi}_2$ are independent, then they are uncorrelated.

A continuous univariate random variable $\tilde{\xi}$ is said to be normal (or has a normal distribution) if its probability density function is of the form

$$p(\xi) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}(\xi-\mu)^2}.$$

We have $\mathbb{E}[\tilde{\xi}] = \mu$ and $\operatorname{Var}(\tilde{\xi}) = \sigma^2$. A standard normal random variable is a random variable that has a normal distribution with $\mu = 0$ and $\sigma = 1$. To express that $\tilde{\xi}$ is a normal random variable with mean μ and variance σ^2 , we use the shorthand notation:

$$\tilde{\xi} \sim \mathcal{N}(\mu, \sigma^2).$$

Let $\tilde{\xi}_1, \tilde{\xi}_2, \tilde{\xi}_3, \ldots$ be an infinite sequence of independent and identically distributed (i.i.d.) random variables, each with an expected value μ . The strong law of large numbers (SLLN) asserts that

$$\mathbb{P}\left(\lim_{I\to\infty}\frac{1}{I}\sum_{i\in[I]}\tilde{\xi}_i=\mu\right)=1.$$

Let $\tilde{\xi}_1, \tilde{\xi}_2, \tilde{\xi}_3, \ldots$ be an infinite sequence of independent and identically distributed (i.i.d.) random variables, each with expected value μ and variance σ^2 . Define $\tilde{\chi}_I = \sum_{i \in [I]} \tilde{\xi}_i$. Note that $\mathbb{E}[\tilde{\chi}_I] = I \times \mu$ and $\operatorname{Var}(\tilde{\chi}_I) = I \times \sigma^2$. The *Central Limit Theorem* (CLT) states that for large I the random variable $(\tilde{\chi}_I - I\mu)/(\sigma\sqrt{I})$ is approximately standard normally distributed. More precisely, letting $\tilde{\xi} \sim \mathcal{N}(0, 1)$, we have

$$\mathbb{P}\left(\frac{\tilde{\chi}_I - I\mu}{\sigma\sqrt{I}} \le r\right) \to \mathbb{P}(\tilde{\xi} \le r) \quad \text{as } I \to \infty \; (\forall r \in \mathbb{R}).$$

1.3 Using YALMIP and MOSEK

YALMIP is a modeling language for convex optimization problems. Using YALMIP, one can interface MATLAB with various off-the-shelf solvers (CPLEX, GUROBI, MOSEK, etc.). YALMIP can be downloaded from http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Main.Download. The installation manual can be found at http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Tutorials.Installation.

We also need an optimization solver. In this course, we shall utilize MOSEK (https://mosek.com/) which is excellent for solving generic conic programs. MOSEK has free academic license which can be requested online from https://license.mosek.com/academic/.

To this end, let us try to use the YALMIP and MOSEK combination to solve a simple mean-variance portfolio optimization given by:

minimize
$$\lambda \boldsymbol{w}^{\top} \boldsymbol{\Sigma} \boldsymbol{w} - (1 - \lambda) \boldsymbol{\mu}^{\top} \boldsymbol{w}$$

subject to $\boldsymbol{w} \in \mathbb{R}^{N}_{+}$
 $\mathbf{e}^{\top} \boldsymbol{w} = 1.$

An example of implementation of the mean-variance portfolio optimization problem in YALMIP is given as follows.

Listing 1.1. Mean-Variance Optimization

clear all
yalmip clear
options = sdpsettings('verbose', 0, 'dualize', 0, 'solver', 'mosek');
N = 3; % number of assets
mu = [10; 20; 30]; % mean returns
sigma = 0.3*mu; % std deviations
corr_mat = gallery('randcorr',N); % correlation matrix
Sigma = diag(sigma)*corr_mat*diag(sigma); % covariance matrix

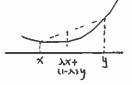
```
lambdas = [0:0.1:1];
variances = zeros(length(lambdas),1);
means = zeros(length(lambdas),1);
for i=1:length(lambdas)
lambda = lambdas(i);
w = sdpvar(N,1); % decision variable
obj = lambda*w'*Sigma*w - (1-lambda)*mu'*w; % objective value
% generate the constraints
constraints = {};
constraints {end+1} = w >= 0;
constraints {end+1} = sum(w) == 1;
% solve the problem
optimize([constraints{:}], obj);
```

```
% collect the outputs
variances(i) = double(w'*Sigma*w);
means(i) = double(mu'*w);
end
```

```
% plot the efficient frontier
plot(variances, means);
xlabel('Variance');
ylabel('Expected_Return');
```

Capital day and er inca pully

HW 30% Project 30%	due Friday Nov. 18. 5.00 p.m.
Final 40%	Wed. Dec. 14, 2:00 - 5:00 p.M.


Lecture 1 - Example : portfolio optimization, Allocate. Wealth W into a number of assets. Parameter & = (Eq. EA. Se) is uncertainty $m \propto \chi^{T} \xi$ st. X≥c Enorgle $C^T W = W$ - Example: newsvondor problem. demand is uncertainty. - Example : machine learning. given observation points with labels. seek to classify a new data point into one of several categories. the data paints come from withnown distribution. - Example: PILOTY from NETLIB coefficients are o.1% accurate, > the optimal solution can violate 450%. min $C^T x$ st. Axsb. C.A.b. all can be uncertainty Definition Extended reals: R = RU1-00, +001 [] = { 1, ..., 1] , IE N Definition of general optimization problem. inf fo(x) Feacible set: st. XEIRN X= 1 x ER": firs) so, Yx E[]) (P) filmso. HIG[] <u>Def</u>: dom(f) = $\{x \in \mathbb{R}^{N} : f(x) < +\infty \}^{?}$ <u>Pet</u>: (Infimum) inf (P): largest number Z* such that fix> ≥ Z*, YxEX

Def. (Feasibility) Problem (P) is feasible . if $\exists x : f(x) < o$. $\forall i \in [I]$.

Def (Unbounded)
Problem (P) is unbounded, if
$$\inf(P) = -\infty$$

Def. (Convex.).

$$f(\lambda x + (1-\lambda)x) \leq \lambda f(\lambda) + (1-\lambda) f(x)$$
 $\forall \lambda \in [0,1] \forall x, y \in dom (f)$

Convexity preserving operations.
1) Composition with affine function: fix) is convex in x, then gix) = f(Ax+b) is also convex in x.
2) Nonnegative weighted sum: If f.,..., fk are convex in x, then g(x) = w, f(x) + ... + W = f(x) is also convex in x. for w₁..., w_k ≥ 0
3) Pointwise supremum: If f(x,y) is convex in x for every fixed y ∈ Y, then g(x) = sup f(x,y) is also convex in X.

4) Partial minimization: f(Archiever J+112) Jif flagy jointly convex in X&y. &C is a convex set, s ~ [12]) + 112 of 1 then g(x) = inf [f(7)] y & C] is convex.

Duality theory: Longest partic lover bound
sup inf
$$f_{\sigma}(x) + \frac{1}{2} \vartheta_i f_i(x)$$

st. $\vartheta \in \mathbb{R}^1$
 $\vartheta \neq o$
(D)

(Weat Duality): inf(P) ≥ sup(D) (Strong Duality): if convex + mild conditions (Slaters condition) then inf(P) = sup(D)

Linear Program (LP):
$$f_{0}(x) = C^{T}X$$
, $f_{1}(x) = a_{1}^{T}X - b_{1}$. $\forall i \in [1]$
inf $C^{T}X$
st. $x \in [R^{N}]$
 $Ax \leq b$

Sup inf
$$[C^{T_{X}} + \sum_{i \in [L]} \theta_{i} \partial_{i}^{T_{X}} - \sum_{i \in [L]} \theta_{i} b_{i}^{T_{i}}]$$

 $\theta \in R^{I} \times_{e \in [R^{N}]} = \sup_{\theta \neq 0} - b^{T} \theta + \inf_{\theta \neq [L]} [C^{T_{X}} + \sum_{i \in [L]} \theta_{i} \partial_{i}^{T_{X}}]$, if $-C \neq \sum_{i \in [L]} \partial_{i}^{T_{X}}$
 $\theta \geq 0$
 $= \sup_{\theta \neq 0} - b^{T} \theta$
 $s.t. \quad \theta \in R^{I}$
 $A^{T} \theta = -C$
 $\theta \geq 0$
(LP Strong Duality): If there exists $x \in R^{M}$. Ax $\leq b$.
 $vr \qquad \theta \in R^{I} \qquad A^{T} \theta = -C$, $\theta \geq 0$

then
$$\inf(P-LP) = \sup(D-LP)$$

.

Ka Y Y Set A contains all possible outcomes. example: Dice 1 = 11,2,3,4,5,6 } All subsets A S I are called events. $A = \{ out Come 7.4 \} = \{ 4, 5, 6 \}$ A probability measure IP assigns any event $A \leq \Lambda$ a probability $P(A) \in [0, 1]$ IP satisfies : $-\mathbb{P}(\mathcal{N})=1, \mathbb{P}(\phi)=0$ - A. B disjoint, IP(AUB) = IP(A) + IP(B) - A complement of A, IP (A) + IP (A c) = IP (AUAc) = IP (IL) = 1 - $A \subseteq B$: $IP(A) \leq IP(B)$ and $IP(B \setminus A) = IP(B) - IP(A)$ - A, B arbitrary: IP (AUB) = IP (A) + IP (B) - IP (A (B)) Def. (Support) Support IP is defined as the smallest closet set \Box such that $|P(\Box)=1$ <u>Example</u>: unfair dice : $IP(1) = IP(2) = IP(3) = IP(4) = \frac{1}{4}$, IP(5) = IP(6) = 0then = 11, 2, 3, 4] Def. (Conditional Probability) A.B are two events, then the conditional probability of A given B is $IP(A | B) = \frac{IP(A \cap B)}{IP(B)}$ Example : $= \frac{IP(host open 3 | car behind 2) \cdot IP(car behind 2)}{IP(host open 3)}$ $= \frac{1 \cdot 1/3}{1+5} = \frac{2}{3}$ Def. (Independence). A. B are two events and $IP(A \cap B) = IP(A) \cdot IP(B)$, then A&B are independent. $(P(A|B) = |P(A) \cdot |P(B) / |P(B) = |P(A))$ Random Variable. €: ~> IR* We typically set $\Omega = IR^{k}$, w.l.o.g. $\mathfrak{F}(w) = W$. $\forall w \in \Omega$ Discrete random variable: $\frac{3}{2}$ is supported on finitely many scenarios ξ_1, \dots, ξ_s with probabilities P_1, \dots, P_s , sets: $P_s = 1$

<u>Continuous random variable</u>: clescribed by a density function $P: \mathbb{R}^{k} \rightarrow \mathbb{R}_{+}$ $IP(A) = \int_{A} P(\xi) d\xi$. $\forall A \subseteq \Pi$

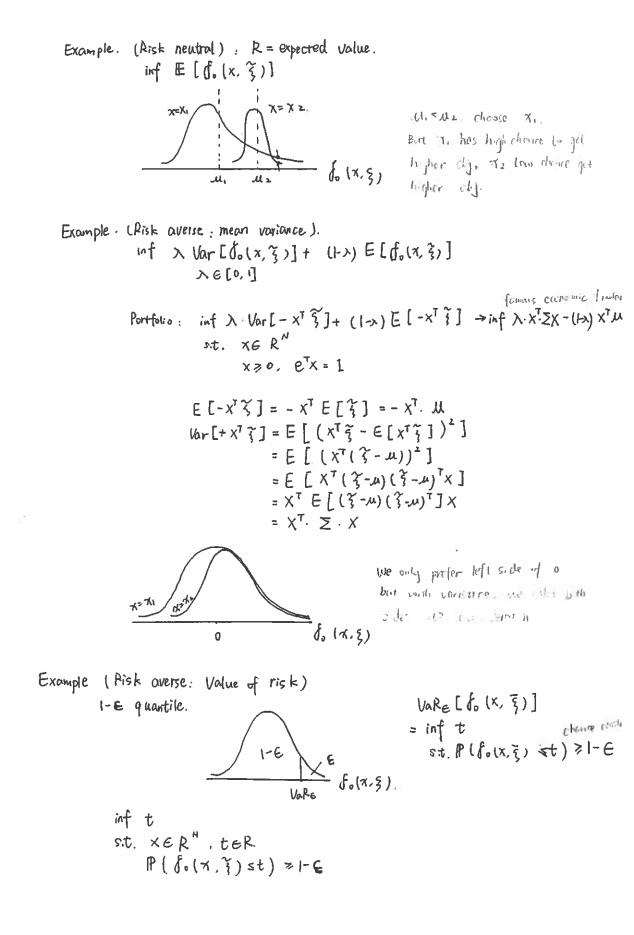
Normal:
$$p(\xi) = \frac{1}{\sqrt{3\pi}} e^{-\frac{1}{264}(\xi - M)^{2}}$$

Def (Expectation).
Expectation of ξ is $E[\xi] = \int_{M} \xi |P(d\xi)|$
If ξ is discrete, $E[\xi] = \sum_{s \in S_{1}} p_{s} \xi_{s}$
If ξ is continuous, $E[\xi] = \int_{M} \xi P(\xi) d\xi$
Def. (Generalized expectation). $f: |R^{k} \rightarrow |R|$
 $E[f(\xi)] = \int_{M} f(\xi) |P(d\xi)|$
Def. (Variance)
 $Var(\xi) = E[(\xi - E[\xi])^{2}]$
std dev $G(\xi) = \sqrt{Var(\xi)}$
Def. (Conditional Expectation).
 $E[\xi]|A] = \frac{E[\xi]}{M} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2}$
 $P(A)$
 $E[\xi]|A] = \frac{1}{6} (1x0 + 2x0 + 3x0 + 4x(1+5x)(h))/\mu = 5$

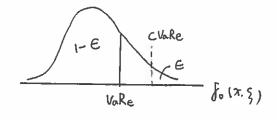
Let \tilde{S}_1 , \tilde{S}_2 ,

$$IP\left(\lim_{I \to \infty} \frac{1}{I} \sum_{i \in [I]} \widetilde{\xi}_i = \mathcal{U}\right) = 1$$

$$\frac{\text{Central Limit Theorem}}{\text{Let }\overline{X}_{I} = \frac{1}{\overline{E}_{I}} \quad \overbrace{S}^{i} \quad \& \quad \widetilde{P} \text{ a std normal } \mathcal{U} = 0, \quad 6^{2} = 1.$$

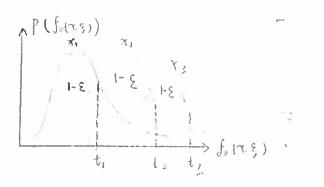

$$\frac{\text{then } |P(\frac{\widetilde{X}_{I} - I \cdot \mathcal{U}}{6 \cdot \overline{J}_{I}} \text{ sr }) \rightarrow |P(\widehat{P} \text{ sr }) \quad as \quad N \neq \infty, \quad \forall r \in \mathbb{R}$$

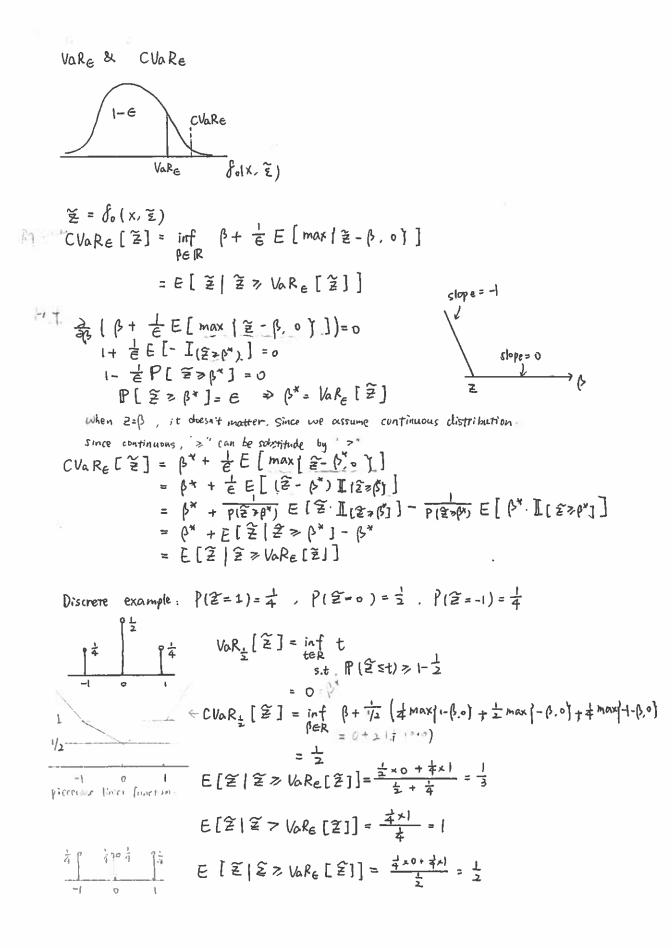
inf tix)
st.
$$x \in \mathbb{R}^{N}$$
 ($h_{2}^{2},...,1$)
five so $\forall i \in III$
uncertainty $\rightarrow \xi \in \mathbb{R}^{n}$
obj. $\delta_{0}(x,\xi)$.
contraints: $f_{1}(x,\xi)$
 $f_{2}(x,\xi)$
 $f_{2}(x,\xi)$
 $f_{2}(x,\xi)$
 $f_{2}(x,\xi)$
 $f_{1}(x,\xi)$
 $f_{2}(x,\xi)$
 $f_{2}(x,\xi)$
 $f_{2}(x,\xi)$
 $f_{2}(x,\xi)$
 $f_{3}(x,\xi)$
 $f_{$


.

Constraint: sup $R_{P}[f_{i}(x, \bar{z})] \leq 0$ (=7 $R_{P}[f_{i}(x, \bar{z})] \leq 0$, $\forall P \in P$ $P \in P$ Example of P- Support only: $P = 1 P \in P_{O}(E)$) - mean + support, $P = 1 P \in P_{O}(E)$: $E[\bar{z}] = \mu$ - mean + support, $P = 1 P \in P_{O}(E)$: $E[\bar{z}] = \mu$ - mean + covariance + support, $P = 1 P \in P_{O}(E)$: $E_{P}[\bar{z}] = \mu$, $E_{P}[\bar{z}\bar{z}\bar{z}\bar{z}] = \Sigma + M \bar{z}$ - mean + mean-absolute deviation + support. $P = 1 P \in P_{O}(E)$: $E_{P}[\bar{z}] = \mu$, $E_{P}[1\bar{z} - \mu]] \leq 6$ - symmetry, distribution is symmetric around μ

- Unimodality




Example. (Risk averse: conditional value - at - risk)

 $g(x) = CVaRe\left[f_{0}(x, \tilde{z})\right] = \inf_{\beta} \beta + \frac{1}{E} E\left[\max_{\beta} \left[f_{0}(x, \tilde{z}) - \beta, \sigma\right]\right]$

.

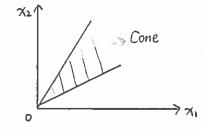
 $(A) \in (B)$ min R[forx, ~)] are different ways st xeX R[f: (x. 2)] ≤0, H:G[1] V5 R[max f: (x. 2)] 50 to handle uncertainty (A)filx. E) so . Vie[1] (=> ie[1] filx. E) so (B)in the condecists. The Sometimes VaRe constrant (=) chance constrant constrant constraint in the for a chance constraint and for the constraint and for the constraint on the constraint of t you may want VaRG[f.(x, 2) to P(f(x, 2) so) > 1- e to apply R inf it: P(fi(x, ž)st) > - e } so
terR intractability to each contrant, <>> ∃t ≤ 0: P(f: (x, ž) ≤t) > HE in which cuise <>> ₽ (f; 1x. 2) = 0) > 1 - 6 you got (A). ClaRe [(i (x, 2)] 50 Other times ⇒ P(f:(x. 2) so) ≥ 1-6 VARE CVARE you many with to employ the VaRe is always smaller than Clare. Once Clarel 150, we have VaRel 150 equivolence of (c) &(D) and then their chance constraint is satified. Since it for is connex. Clare must be convex then we find a convex approximation chonce custiant apply R to (0) ~ P andiguity set P, PEP. distribution only particly barrier (builly (A) and P contains all distributions consistant with prior information: (B) lead to different feisible decision maker ٧S nature хеХ regions for x. Rep inf sup Rp[folx, 2)] xex pep R[folx, ~]] Example (Ambiguity overse rist neutral: worst-case expectation) sup Ep[fo(x, ž)] REP 35 in† dise. хеχ Example (Ambiguity averse tist averse: worst-case VaR) PVARE [f. (x. 2)] in f Sup хех Rop

$$\begin{array}{c|c} \hline Piecewise & lincor model \\ \hline f(\pi, \Sigma) = \max_{\substack{i \in [1] \\ i \in [1] \\ i$$

$$\frac{\mathbb{P} \text{ is diverte with S scentrics}}{\inf \{\mathbb{E} \in [Max_{1}] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]\}} = \frac{\inf \{\mathbb{E} \in [Max_{1}] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]\}}{\inf \{\mathbb{E} \in [Max_{1}] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]\}} = \inf \{\mathbb{E} \in [Max_{1}] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]} = \inf \{\mathbb{E} \in [Max_{1}] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]} = \inf \{\mathbb{E} \in \mathbb{R}^{n} : \sum_{x \in X : x \in [X]} \mathbb{E} \setminus \{\mathbb{E} \in [X] : \mathbb{E} \setminus \{\mathbb{E} \in [X]\}} = \lim_{x \in X : x \in [X]} \mathbb{E} \setminus \{\mathbb{E} \mid [X] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]\}} = \lim_{x \in X : x \in [X]} \mathbb{E} \setminus \{\mathbb{E} \mid [X] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]\}} = \lim_{x \in X : x \in [X]} \mathbb{E} \setminus \{\mathbb{E} \mid [X] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]\}} = \lim_{x \in X : [X]} \mathbb{E} \setminus \{\mathbb{E} \mid [X] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]\}} = \lim_{x \in X : [X]} \mathbb{E} \setminus [X] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]]} = \lim_{x \in X : x \in [X]} \mathbb{E} \cdot \max_{x \in [X]} \mathbb{E} \setminus [X] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]} = \lim_{x \in X : [X]} \mathbb{E} \cdot \max_{x \in [X]} \mathbb{E} \setminus [X] \cap (X)^{T} \stackrel{\sim}{x} \in k_{1}[k]} = \lim_{x \in X : [X]} \mathbb{E} \setminus [X] \cap (X)^{T} \stackrel{\sim}{x} \mapsto (X) \cap (X) ($$

$$\frac{P_{15} (Dertinations)}{E[Imax (d^{T}E+b.o)]} = Monto Carlo methods, somple S scenarios than P
= bounding methods - obtain upper and lower bounds.
$$\frac{Pistributionally Robust Models}{Distribution} = Pistribution (Pistribution) = Pistribution) = Pistribution (Pistribution) = Pistribution (Pistribution) = Pistribution) = Pistribution (Pistribution) = Pistribution) = Pistribution (Pistribution) = Pistribution (Pistribution) = Pistribution) = Pistribut$$$$

$$\begin{aligned} \sup_{\substack{\xi \in \mathbb{R}^{k} \\ \xi \in \mathbb{R}^{k}$$


$$\begin{array}{c} (=) \\ inf. t^{T}\theta_{j} + b_{j} h_{j} \\ \theta_{j} \in \mathbb{R}^{m}_{+} \end{array} \end{array} \right\} \quad sr. \forall_{j} \in [1] \\ s.t. s^{T}\theta_{j} = \alpha_{j} h_{j} \\ (=) \quad \exists \theta_{j} \in \mathbb{R}^{m}_{+} : t^{T} \theta_{j} + b_{j} h_{j} \\ sr. s^{T}\theta_{j} = \alpha_{j} h_{j} \\ \forall j \in [1] \end{array}$$

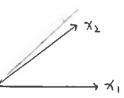
- mean & covariance matrix $P = \{P \in P(\mathbb{R}^{K}) : \mathbb{E}_{P}\mathbb{E}^{k}\} = \mu, \mathbb{E}\left[(\tilde{z}-\mu)(\tilde{z}-\mu)^{T}\right] \leq \sum^{T} \{P \in \mathbb{E}^{k}\} = \mu\mu^{T}$ - Delage & Ye (2010): generic framework- H Scarf (1958): single - item newsvendor problem. $<math display="block">M \gg o \iff \sum^{T} M \leq 2o, \forall z \in \mathbb{R}^{K}$ $\equiv -\mathbb{E}\left[(\tilde{z}-\mu)(\tilde{z}-\mu)^{T}\right] \neq O$ If use let $\Sigma = \mathbb{E}\left[(\tilde{z}-\mu)(\tilde{z}-\mu)^{T}\right]$ $- if \ \square = \mathbb{R}^{K} : (=) equivalent to(\leq)$ $- if \ \square is a polytope : (=) leads to NP hard problem.$ $\mathbb{E}\left[(\tilde{z}-\mu)(\tilde{z}-\mu)^{T}\right] = \mathbb{E}\left[\tilde{z} \in \mathbb{T}\right] - 2\mu\mu^{T} + \mu\mu^{T} = \mathbb{E}\left[\tilde{z} \in \mathbb{T}\right] - \mu\mu^{T}$ $\frac{\text{Lemma:}}{\frac{L}{2}b^{T}} \left[\frac{A}{2}b\right] \neq 0 \quad (\Rightarrow C + b^{T} \epsilon + \epsilon^{T} A \epsilon \geq 0) \quad \forall \epsilon \in \mathbb{R}^{K}$ $\text{Set } \left[e = 1 \implies \left[\begin{bmatrix} x \\ z \\ b \end{bmatrix}^{T} \left[\frac{A}{2}b^{T} \\ z \\ b \end{bmatrix}\right] \neq 0 \quad (\Rightarrow C + b^{T} \epsilon + \epsilon^{T} A \epsilon \geq 0) \quad \forall \epsilon \in \mathbb{R}^{K}$ $\text{Set } \left[e = 1 \implies \left[\begin{bmatrix} x \\ z \\ b \end{bmatrix}^{T} \left[\frac{A}{2}b^{T} \\ z \\ b \end{bmatrix}\right] \neq 0 \quad \forall \epsilon \in \mathbb{R}^{K}$ $(\Leftarrow) \quad \left[\begin{bmatrix} x \\ z \\ b \end{bmatrix}^{T} \left[\frac{A}{2}b \\ z \\ b \end{bmatrix}\right] = \mathbb{E}\left[\begin{bmatrix} x \\ z \\ b \end{bmatrix} = \mathbb{E}\left[\begin{bmatrix} x \\ z \\ b \end{bmatrix} = \mathbb{E}\left[\begin{bmatrix} x \\ z \\ b \end{bmatrix}\right] = \mathbb{E}\left[\begin{bmatrix} x \\ z \\ b \end{bmatrix} = \mathbb{E}\left[\begin{bmatrix} x \\ z \\ b \end{bmatrix}\right] = \mathbb{E}\left[\begin{bmatrix} x \\ z \\ b \end{bmatrix}\right] = \mathbb{E}\left[\begin{bmatrix} x \\ z \\ b \end{bmatrix} = \mathbb{E}\left[\begin{bmatrix} x \\ z \\ b \end{bmatrix}\right] = \mathbb{E}\left$

$$\Rightarrow \left\{ {}^{*} \begin{bmatrix} \varepsilon \\ 1 \end{bmatrix}^{T} \begin{bmatrix} A \pm b \\ \pm bT \end{bmatrix} \begin{bmatrix} \varepsilon \\ 1 \end{bmatrix} = 20, \forall \varepsilon \in \mathbb{R}^{K}, \forall \beta \in \mathbb{R}, \beta \neq 0 \\ \Rightarrow \begin{bmatrix} \varepsilon \\ 1 \end{bmatrix}^{T} \begin{bmatrix} A \pm b \\ \pm bT \end{bmatrix} \begin{bmatrix} \varepsilon \\ 1 \end{bmatrix} = 20, \forall \varepsilon \in \mathbb{R}^{K}, \forall \beta \in \mathbb{R}, \beta \neq 0 \\ \Rightarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{T} \begin{bmatrix} A \pm b \\ \pm bT \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 20, \forall \theta \in \mathbb{R}^{K}, \forall \beta \in \mathbb{R}, \beta \neq 0 \\ \Rightarrow \varepsilon \in \mathbb{R}^{K} = 20, \forall \theta \in \mathbb{R}^{K}, \forall \beta \in \mathbb{R}, \beta \neq 0 \\ \Rightarrow \varepsilon \in \mathbb{R}^{K} = 20, \forall \theta \in \mathbb{R}^{K}, \forall \theta \in \mathbb{R}, \beta \neq 0 \\ \Rightarrow \varepsilon \in \mathbb{R}^{K} = 20, \forall \theta \in \mathbb{R}^{K}, \forall \theta \in \mathbb{R}, \beta \neq 0 \\ \Rightarrow \varepsilon \in \mathbb{R}^{K} = 20, \forall \theta \in \mathbb{R}^{K}, \forall \theta \in \mathbb{R}, \beta \neq 0 \\ \Rightarrow \varepsilon \in \mathbb{R}^{K} = 20, \forall \theta \in \mathbb{R}^{K}, \forall \theta \in \mathbb{R}, \beta \neq 0 \\ \Rightarrow \varepsilon = 20, \forall \theta \in \mathbb{R}^{K}, \forall \theta \in \mathbb{R}, \beta \neq 0 \\ \Rightarrow \varepsilon = 20, \forall \theta \in \mathbb{R}^{K} = 20, \forall \theta \in \mathbb{R}^{K} = 20, \forall \theta \in \mathbb{R}^{K} \\ \Rightarrow \varepsilon = 20, \forall \theta \in \mathbb{R}, \xi = 10, \forall \theta \in \mathbb{R}^{K} \\ \Rightarrow \varepsilon = 20, \forall \theta \in \mathbb{R}, \xi = 10, \forall \theta \in \mathbb{R}^{K} \\ \Rightarrow \varepsilon = 20, \forall \theta \in \mathbb{R}, \xi = 10, \forall \theta \in \mathbb{R}^{K} \\ \Rightarrow \psi = 20, \forall \theta \in \mathbb{R}, \xi = 10, \forall \theta \in \mathbb{R}^{K} \\ \Rightarrow \psi = 20, \forall \theta \in \mathbb{R}^{K} \\ \Rightarrow$$

.

<u>Conic Programming</u> Linear Optimization Problems over a convex cone.

C is a cone if VXGC. we have XXGC . 4230 C is a <u>convex cone</u> if it is cone and is convex. The shadow part in graph is a convex cone.


Conic Program: inf
$$C^T X$$

st. $x \in \mathbb{R}^N$
 $Ax \leq_e b$ $\langle = \rangle b - Ax \in \mathcal{C}$
cone e

trample:
u)
$$C = R_{+}^{R} \Rightarrow b - Ax \in R_{+}^{R} \Rightarrow Ax \leq b$$
 (LP)
w) $C = S_{+}^{R} \Rightarrow$ Semidefinite programming (SDP)
 S^{K} : set of symmetric matrices in $R^{K\times K}$ ($A^{T} = A$)
 S_{+}^{R} : set of positive semidefinite matrices in $R^{K\times K}$
 $M \in S_{+}^{K} \Leftrightarrow \Sigma^{T} M \Sigma \geq 0$. $\forall \Sigma \in R^{K}$
SDP, inf $C^{T}x$

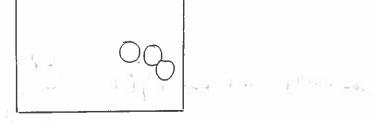
В

S.T.
$$X \in \mathbb{R}^{N}$$

AIXIT - + ANXN \neq SF

where
$$A_1, A_2, \dots, A_N$$
, $B \in S^k$
(3) $C = \{ (x,t) \in \mathbb{R}^N \times \mathbb{R} : \|\|x\|\|_2 \le t \}$ — second - order cone (soc)
 t_0

Dual cone. C*: YERK: < Y, x> >0. YXECJ wher < y, x > is inner product


Self Dual cones (
$$C = C^*$$
):
 $C = R^+$, $C^* = R_{+}^{L^*}$
 $C = S_{+}^{K}$
 $A = S_{+}^{K}$
 $A = S_{+}^{K}$
 $A = S_{+}^{K}$
 $C = S_{+}^{K}$
 $A = S_{+}^{K}$
 $C = S_{+}^{K}$
 $C = S_{+}^{K}$
 $A = S_{+}^{K}$
 $C = C^{K}$
 $C = C^{K}$

means of effect having
$$f_{1}(x, \varepsilon) \le d + \beta^{T} \varepsilon + \varepsilon^{T} y \le d \le e^{k}$$
 (x)
(d) $\varepsilon > 2 d_{1}(x) \le d_{1}(x) \le d + \beta^{T} \varepsilon + \varepsilon^{T} y \le d \le e^{k}$, $y_{1} \in [1]$
(e) $0 \le d + \beta^{T} \varepsilon + \varepsilon^{T} y \le - d_{1}(x) = b_{1}(x)$, $y_{2} \in p^{k}$, $y_{1} \in [1]$
(f) $\varepsilon > 0 \le d + \beta^{T} \varepsilon + \varepsilon^{T} y \le - d_{1}(x) = b_{1}(x)$, $y_{2} \in p^{k}$, $y_{1} \in [1]$
(f) $\varepsilon > 0 \le d + \beta^{T} \varepsilon + \varepsilon^{T} y \le - d_{1}(x) = 0$, $y_{1} \in [1]$
Thermal Iterpretation:
 $d_{1}(x)^{T} \varepsilon + b_{1}(x) = \lambda$
 $f = (d + \beta^{T} \varepsilon + \varepsilon^{T} y \le 1] = d + \beta^{T} \mu + \langle y, z + \mu\mu^{T} \rangle$
Complementary slackness:
 $(d + \beta^{T} \varepsilon + \varepsilon^{T} y \le 1] = d + \beta^{T} \mu + \langle y, z + \mu\mu^{T} \rangle$
Complementary slackness:
 $(d + \beta^{T} \varepsilon + \varepsilon^{T} y \le 1] = d + \beta^{T} \mu + \langle y, z + \mu\mu^{T} \rangle$
Complementary slackness:
 $(d + \beta^{T} \varepsilon + \varepsilon^{T} y \le 1] = d + \beta^{T} \mu + \langle y, z + \mu\mu^{T} \rangle$
Complementary slackness:
 $(d + \beta^{T} \varepsilon + \varepsilon^{T} y \le 1] = d + \beta^{T} \mu + \langle y, z + \mu\mu^{T} \rangle$
Complementary slackness:
 $(d + \beta^{T} \varepsilon + \varepsilon^{T} y \le 1] = d + \beta^{T} \mu + \langle y, z + \mu\mu^{T} \rangle$
Complementary slackness:
 $(d + \beta^{T} \varepsilon + \varepsilon^{T} y \le 1] = d + \beta^{T} \mu + \langle y, z + \mu\mu^{T} \rangle$
Complementary slackness:
 $(d + \beta^{T} \varepsilon + \varepsilon^{T} y \varepsilon - max (1 \beta_{1}(x)^{T} \varepsilon + b_{1}(x))) + v(\varepsilon) = 0$, $\forall \varepsilon \in \mathbb{R}^{k}$
 $g \in (1]$
 $\psi = max (1 \beta_{1}(x)^{T} \varepsilon + b_{1}(x))$ is less theretion.

By complementary slackness, whences $w + \beta^{T} \beta + \beta^{T} \beta^{T} \gamma > \max_{1 \leq i \leq j} \beta^{T} \beta^$

-Worst-case CVaR:

$$\begin{split} \inf_{\substack{x \in X \\ t \in R}} \inf_{\substack{x \in Y \\ t \in R}} \sum_{\substack{p \in p \\ p \in P \\ p$$

Experiment - Urn :

a 10

Clamble A: If you draw a red ball:\$100 Gramble C: If draw red or yellow :\$100 Gamble B: If youdraw a blue ball:\$100 Gamble D: If draw blue or yellow: \$100

```
If A \ge B: P(draw = red) \ge P(draw = blue).
If C \le D: P(draw = red) \le P(draw = blue)
```

Lecture 9 Sept. 22

3 Two-stage models. 3 Sequential decision - making problems Stage 1 Stage 2 (7 $\begin{array}{cccc} x \in X & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & &$ 0 COSTS CTX $(\alpha \varepsilon + g)^{T} y$ y(z) is a recourse / corrective action. $C^T x + R[Z(\pi, 2)]$ R^{H_1} μ recourse function. inf xexer" where $Z(x, \tilde{z}) = \inf (Q \Sigma + g)^T y$ s.t. $y \in \mathbb{R}_{+}^{N_2}$ Tix) st hix) = W y $J \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} M_2 \\ M_2 \end{bmatrix} \end{bmatrix}$ OGR^{NIAK} WGR TG) = / gERK $j \text{ th row } : T_j(x) = T_j x + \hat{t}_j$ $T_j \in \mathbb{R}^{k \times N_i}$, $\hat{t}_j \in \mathbb{R}^k$ $h(n) = Hx + \hat{h}$. $H \in \mathbb{R}^{J \times N_1}$, $\hat{h} \in \mathbb{R}^{J}$. When $\mathcal{R}[] = \mathbb{E}[]$: inf: $C^{T}X + \mathbb{E}[\mathcal{E}(X, \mathcal{E})]$. (25) xeX s | R^{N_1} Example : - Piecewise Linear Models. 0 $Z(\pi, \chi) = \inf \Psi$ s.t. yer 0 a_{jn} , $r \in b_j(n) \leq y$ $\forall j \in [j]$ 0 < Smax ajout & +6112) 54. 0 Multi-product Assembly 0 K products. 1 4 N parts. 0 n <u>A</u> Onk 0 όK NΔ

$$\begin{array}{c} \underline{Data}:\\ Cn & per-unit cost of part $n \in [N] \\ g_k & per-unit solving price of product $k \in [k] \\ Ank number of units of port n required to produce 1 unit of product $k. \\ \underline{Pondom Variable} \\ \overline{e}_k & demand of product $k \in [K] \\ \hline \underline{1st - stage \ decision} \\ xn & number of units of part $n \in [N]$ to purchase \\ \underline{2nd - stage \ decision} \\ y_k(C) & number of units of product $k \in [K]$ to produce.
min. $C^T x + E[\Xi(x, \xi)] \\ xdR_i^N \\ where \ \Xi(x, \xi) = min - g^T y \\ st. \ y \in R_i^K \\ \sum \\ Z \in [C] \ Onk \cdot y_k \leq x_n \ , \forall n \in [N] \\ where \ \Xi(x, \xi) = min - g^T y \\ y_k \leq x_k \ , \forall k \in [K] \\ \hline Capacity expansion for electric power generator \\ N \ generators \\ k \ demand sites \\ n \ \Box \ f_{N,K} \cap K \\ \hline \underline{Data} \\ b \ bound \ on \ total generation \ capacity \ at generator n. \\ the demand site k \ \\ R \ unit cost of \ installing \ copacity \ at generator n \\ to demand site k \ \\ R \ unit subcontracting \ cost of \ demand site k \\ \hline R \ unit subcontracting \ cost for \ demand site k \\ \hline R \ unit subcontracting \ cost for \ demand site k \\ \hline R \ unit subcontracting \ cost for \ demand site k \\ \hline R \ unit subcontracting \ cost for \ demand site k \\ \hline R \ unit subcontracting \ cost for \ demand site k \\ \hline R \ unit subcontracting \ cost for \ demand site k \\ \hline R \ unit subcontracting \ cost for \ demand site k \\ \hline R \ unit subcontracting \ cost for \ demand site k \\ \hline R \ unit subcontracting \ cost for \ demand site k \\ \hline R \ unit subcontracting \ cost for \ demand site k \\ \hline R \ unit subcontracting \ cost for \ demand site k \\ \hline \Rightarrow \ \chi = (f, d) \\ \hline \end{array}$$$$$$$

$$\frac{1 \text{ strage decision}}{x_n \quad \text{capacity installul in generator } n.}$$

$$\frac{1 \text{ strage decisions}}{y_{nk}(\Sigma) \quad \text{ units of energy shipped from } n \text{ to } k.$$

$$S_F(\Sigma) \quad \text{ units of energy from subcontracting sont to Userand site k.}$$

$$inf \quad CX + E[Z(X, \Sigma)] \quad \text{ st. } X \in \mathbb{R}^{k}$$

$$e^{X} \times 5.$$

$$where \quad Z(X, \Sigma) = \inf \{ \sum_{k \in N} \sum_{k \in$$

.

19	
0	def (complete recourse): (-1) has a complete recourse. if $I Wy : y \in \mathbb{R}^{N_2} = \mathbb{R}^J$ span
3	
0	O Suppose a problem doesn't have complete recourse, how to make it complete? A:
0	$Z(\pi, \varepsilon) = \inf \left(Q\varepsilon + g \right)^T y + \sum_{\substack{t \in V \\ T \text{ Large value}}} e^T (Z_+ + Z)$
)	st. $y \in \mathbb{R}^{N^2}_+$, $\mathcal{E}_+ \in \mathbb{R}^{\frac{1}{2}}_+$, $\mathcal{E}_i \in \mathbb{R}^{\frac{1}{2}}_+$
	$T(3) \cdot S + h(3) = Wy + Z_{+} - Z_{-}$
3	
	Lecture 10 Sept. 2
3	sta $y \in \mathbb{R}^{N_2}$
3	$T(x) \ \xi + h(x) = Wy$ $Ducl Problem: \ Zd(x, \xi) = sup(T(x) \ \xi + h(x))^{T} T (RD)$
3	s.t. $\pi \in \mathbb{R}^{J}$
9	$Q \Sigma + q \ge W^T \Pi$
)	Strong LP duality holds if either (RP) is feasible (Z1x, E) < too)
3	or (RD) is feasible $(Z_d(x, \varepsilon) > -\infty)$
)	-Lemma: $Z(x, \varepsilon)$ is convex in x for any fixed $\varepsilon \in \mathbb{C}$
	2 Ways:
)	1) partial infimum of LRP):
0	$1 (x, y) \in \mathbb{R}^{N'} \times \mathbb{R}^{N}_{+}$: $T(x) \in H(x) = W_y$ is convex $(Q \in +g)^T y$ is jointly convex in (x, y)
0	
1	2) pointwise supremum of (RD) $(T(x) \in \pm h(x))^T \Pi$ is convex in x for any fixed Π .
)	(This S + has) TH is assure to the a first
)	(IN) 2 TILE) I 'S CONVER IN X IVE GAY TIKED IT.
	and the management of the state
)	⇒(25) is convex optimization problem.
100	$\Rightarrow (25)$ is convex optimization problem. - Lemma if $Q = 0_{x}$, then $\Xi(x, \varepsilon)$ is convex in ε for any fixed $x \in X$.
Э	\Rightarrow (25) is convex optimization problem. - Lemma. if $Q = 0_{R}$, then $Z(X, E)$ is convex in E for any fixed $x \in X$.
100	$\Rightarrow (25) \text{ is convex optimization problem.}$ $- \text{Lemma. if } Q = 0, \text{ then } Z(X, E) \text{ is convex in } E \text{ for any fixed } X \in X.$ $= \sum_{\substack{n \in Uncertainty in obj.}} z(X, E) = \inf_{n \in Uncertainty in obj.}$
Э	$\Rightarrow (25) \text{ is convex optimization problem.}$ $- \text{Lemma. if } Q = 0, \text{ then } \mathbb{Z}(X, \mathbb{E}) \text{ is convex in } \mathbb{E} \text{ for any fixed } X \in X.$ $\stackrel{\text{No lincertainty in obj.}}{\mathbb{E}(X, \mathbb{E})} = \inf_{x \in \mathbb{R}^{N_2}} g^{T} y$ s.t. $y \in \mathbb{R}^{N_2}$
))	⇒(25) is convex optimization problem. - Lemma. if $Q = 0_x$, then $Z(x, \varepsilon)$ is convex in ε for any fixed $x \in X$. No lincertainty in obj. $Z(x, \varepsilon) = \inf_{x \to 0} g^T y$ s.t. $y \in \mathbb{R}^{N_2}$ T(x) $\varepsilon + h(x) = W y$
))	$\Rightarrow (25) \text{ is convex optimization problem.}$ $- \text{Lemma. if } Q = 0, \text{ then } \mathbb{Z}(X, \mathbb{E}) \text{ is convex in } \mathbb{E} \text{ for any fixed } X \in X.$ $\overset{NO}{=} \substack{no \\ no \\$

$$\frac{1}{14} \sum_{k=1}^{\infty} \frac{1}{14} \sum_{k=1}^{\infty} \frac{1}{1$$

How to solve (25): - P is discrete distribution with S scenarios inf c^Tx + E [Z(X, き)] $= \inf_{x \in X} c^{T}x + \sum_{s \in [s]} p^{s} \neq (x, z^{s})$ = $\inf_{x \in X} c^{T}x + \sum_{s \in [S]} p^{s} \inf \{(Q, \Sigma^{s} + q)^{T}y^{s}, y^{s} \in \mathbb{R}^{N_{2}}, T(x), \Sigma^{s} + h(x) = Wys\}$ = inf $c^{T}x + \sum_{s \in ISJ} P^{S} (\partial_{s} \Sigma^{S} + g^{T} Y^{S})$ It is LP if Σ is polytope s.t. $x \in X$, $Y^{S} \in IR_{+}^{M_{2}}$, $\forall S \in [S]$ $T(X) \Sigma^{S} + h(X) = WY^{S}$, $\forall S \in [S]$ complexity depends on S - Later Bender's decomposition algorithm. and a similar the second second P is continuous distribution. 1) Monto - Carlo: sample S scenarios from P 2) upper & lower bounds on (25) Naive bounds: the line of the states of the => $Z(x, \varepsilon)$ is convex in ε for any fixed x. Assume Q=0 Assume E[2] = M Ambiguing set $p = \{P \in P_0(\Box) : \mathbb{E}_P[\widetilde{z}] = M\}$ inf $C^T x + inf \mathbb{E}_P[Z(X, \widetilde{x})]$ (NLB) хеХ Pep $\mathbb{E}_{\mathbb{P}}[\mathcal{Z}(X,\mathcal{Z})] \supset \mathcal{Z}(X,\mathbb{E}_{\mathbb{P}}[\mathcal{Z}])$. $\forall \mathbb{P} \in \mathcal{P}$ $\Rightarrow \inf_{\substack{P \in \mathcal{P}}} E_{P}[\mathcal{Z}(X, \mathcal{Z})] \Rightarrow \mathcal{Z}(X, \mathcal{U})$ Dirac distribution P^* at μ , s.t. $P^*(\tilde{z} = \mu) = 1$ is feasible in P

 \bigcirc

0

0

3

0

0

C

)

)

)

)

)

)

Include 11. Apple 21
inf
$$cX + E[2(x, 3)]$$

wax
where $. \geq (x, s) = inf (0 \leq r q)^T y$
 $xz, y \in \mathbb{R}^{n_0}$
 $T(x) \leq rh(x) \leq Wy$
Naive bounds.
 $-Assume Q=0 \Rightarrow \geq (X, s)$ is convex in \leq for any fixed X
 $-Assume E[s] = Ju$
Lower bound. (Jewsen's Bound)
 $E[z](x, 2)] \geq mf Eq[2(x, 2)]$ $p = \{PeP_{\bullet}(\Box) : E_{P}[z] = J_{\bullet}\}$
 $pep [z](x, 2)] \geq mf Eq[2(x, 2)]$ $p = \{PeP_{\bullet}(\Box) : E_{P}[z] = J_{\bullet}\}$
 $Pep [z](x, 2)] \geq mf Eq[2(x, 2)] = J is tessible , $\mathbb{P}^{N} ep$
 $\Rightarrow E_{PP}[z](x, 2)] = \geq (x, M)$
 $\Rightarrow \inf_{Pep} [z](x, 2)] = \geq (x, M)$
 $\Rightarrow \inf_{Pep} [z](x, 2)] = \geq (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, 2)] = \sum (x, M)$
 $inf c^{T}x + E[z](x, M)$
 $inf c^{T}x + E[z](x](x](x])$
 $inf c^{T}x + E[z](x](x])$
 $inf c^{T}x + E$$

$$E = P_{\alpha}(z) \quad \text{at } P_{\beta}(z) \quad b + P_{\ell}(z)(z + P_{\alpha}(z))d$$

$$E = P_{\alpha}(z) \quad \text{at } P_{\beta}(z) \quad b + P_{\ell}(z)(z + P_{\alpha}(z))d$$

$$\frac{1}{|z|} = \sum_{b} \sum_{b} \sum_{a \in avec} \sum_{a \in avec} \sum_{b} [P_{\alpha}(z)] \quad z(x,e) \quad \text{publicity converted on (where Pairs)} \\ \frac{P_{10}e_{1}}{|z|} \quad \text{for any } s \in E, \quad \text{we have.} \\ = \overline{z}(x, \underline{z}, p_{1}(z), e_{1}) \quad S \quad \underline{z}(x,e) \quad (\text{Lemma } peq) \\ Taking expectations on both side. \\ = E[z(x, 2)] \quad s \in E[\sum_{e \in avec} p_{1}(z)] \quad z(x,e) \quad (\text{Lemma } peq) \\ = \sum_{e \in avec} p_{1}(z) \quad z(x,e) \quad ext(E) = i_{a,b} \\ \text{then } p_{\alpha}(s) = \frac{b-s}{b-\alpha} \quad p_{1}(s) = \frac{c-\alpha}{b-\alpha} \quad p_{1}(s) + p_{1}(s) = \frac{b-\alpha}{b-\alpha} = 1 \\ P_{\alpha}(z) \quad \alpha + P_{\alpha}(z) \quad b = (ab - as + bz - ab)/(b-\alpha) = 2 \\ \end{bmatrix} \quad E[z(x, 2)] \quad s \in E[P_{\alpha}(2s)] = i_{\alpha}(x) + E[P_{\alpha}(2s)] = z(x,b) \\ = (\frac{b-\alpha}{b-\alpha}) \quad z(x,\alpha) + (\frac{d+\alpha}{b-\alpha}) \quad z(x,b) \\ = (\frac{b-\alpha}{b-\alpha}) \quad z(x,\alpha) + (\frac{d+\alpha}{b-\alpha}) \quad z(x,b) \\ = (\frac{b-\alpha}{b-\alpha}) \quad (\frac{b-\alpha}{b-\alpha}) \quad (\frac{b-\alpha}{b-\alpha}) \quad (\frac{b-\alpha}{b-\alpha}) \\ \frac{Fxample 2}{(a-b)} \quad (b,ba) \quad p_{1}(a,ba)(s) = (\frac{b_{1} - S_{1}}{b_{1} - \alpha_{1}}) \quad (\frac{b_{1} - S_{2}}{b_{2} - \alpha_{2}}) \\ = \frac{f(a,ba)}{(a-b)} \quad z(x,b) \quad (z) = (\frac{b_{1} - S_{1}}{b_{2} - \alpha_{1}}) \quad (\frac{b-\alpha}{b_{2} - \alpha_{2}}) \\ p_{1}(a,ba)(s) = (\frac{b_{1} - S_{1}}{b_{2} - \alpha_{1}}) \quad (\frac{b-\alpha}{b_{2} - \alpha_{2}}) \\ p_{1}(a,ba)(s) = (\frac{b_{1} - S_{1}}{b_{2} - \alpha_{1}}) \quad (\frac{b-\alpha}{b_{2} - \alpha_{2}}) \\ = E[z(x,\overline{x})] \quad s \in E[P_{\alpha}(a_{\alpha})(\overline{x})] \quad z \in (x, [\overline{x})] \\ = (EP_{1}(a_{\alpha})(\overline{x})] \quad z \in (x, [\overline{x})] \\ = E[z(x, \overline{x})] \quad s \in E[P_{1}(a,a_{\alpha})(\overline{x})] \quad z \in (x, [\overline{x})] \\ = (EP_{1}(a,b_{\alpha})(\overline{x})] \quad z \in (x, [\overline{x})] \\ = (EP_{1}(a,b_{\alpha}$$

- Constraints: TjME + hyu) & Wj (TE+ y), YjE[J], YEE B E> hju) - WJ y = (Wj Y - Jin) E Vjelj VEED $(=) h_j x_j - w_j^T y \leq \inf_{s \in s \in t} (w_j^T Y - \overline{I}_j x_j^T) \leq y_j \in \overline{L}]$ 1 <7 JOj ER, . hjw - Wjy s - Ojt Vjell $T^{T}W_{1} + S^{T}O_{1} = T_{1}K_{1}$ 3 > (*) (*) s inf cTx + tr (OTY) + gTY u+ uTQTy+gry st. XEX, YER^{N2}K, YER^{N2}, OjER⁴, Hje[]) $Y^{T}W_{j} t S^{T}\Theta_{j} = JW A j \in [J]$ ALL ALL $h_j(x) = W_j^T y \leq -\Theta_j^T t$, $\forall j \in [j]$ -Interprotation: inf [Y(E)] yern-Where YLE) >E, YEEE Y(E) >-E. VSE [] 3 3 Lower bound (Assume dim(3)= RK) Dual $\cancel{k} = \mathbb{E}_d(\mathbf{x}, \mathbf{s}) = \sup (\mathsf{T}(\mathbf{x}) \mathbf{s} + h(\mathbf{x}))^T \mathsf{T}$ 3 st. TER+ $Q_{2} \neq q = W^T \eta$ 1 For any fixed $x \in \mathbb{E}[Z(x, z)] = \mathbb{E}[Z_d(x, z)]$ = $\mathbb{E} \left[\sup_{x \to 1} \left[(T_x) \tilde{\varepsilon} + h(x) \right]^T \pi \cdot \pi \in \mathbb{R}^{J}, Q\tilde{\varepsilon} + g = w^T \pi Y \right]$ = $\sup \mathbf{E} \left[(T(\mathbf{x}) \hat{\boldsymbol{\varepsilon}} + h(\mathbf{x}))^T \pi (\hat{\boldsymbol{\varepsilon}}) \right]$ st. πιε)∈R] HSE 2) $Q \Sigma + q = W^T \pi(\Sigma)$, $\forall \Sigma \in \Box$ ≥ sup $\mathbb{E} \left[(\tilde{T}(x)\tilde{\varepsilon} + h(x))^{T} (T\tilde{\varepsilon} + \rho) \right]$ 3 s.t. TERJAK PERI $Q \Sigma + q = W^T (\pi \Sigma + P) \quad \forall \Sigma \in E$ (1) -T 5+ P >0 4 5 6 E (2) Objective: $E[\widehat{z}^T Tw^T T \widehat{z} + hw] T \widehat{z} + \widehat{z}^T Tw^T \ell + hw \ell]$ diver function of a cl ℓ . 3 = tr $(Tw^T II (Z + ww^T)) + hw^T II w + w^T Iw^T \rho + hw^T \rho$) Constraints: $Q \Sigma + g = W^T \Sigma + W^T \beta$. $\forall \Sigma \in \Xi$ assume dim $(\Xi) = K$, meaning that Ξ has an interior)

Lecture B. Cet. 6) Dualization. min $\begin{bmatrix} max & c^Tx + \Theta_1^TA_1x - \Theta_1^Tb_1 + \Theta_2^Tb_2 - \Theta_2^TA_2x \end{bmatrix}$ CTX min st. XERN) θ2 Aixsb. 0,70 $= \underset{\substack{\theta_{1} \neq 0}}{\max} - \theta_{1}^{\mathsf{T}} b_{1} + \theta_{2}^{\mathsf{T}} b_{2} + \underset{X}{\min} C^{\mathsf{T}} X + \theta_{1}^{\mathsf{T}} A_{1} X - \theta_{2}^{\mathsf{T}} A_{2} X$) $A_{1} \times = b_{1}$ θz θz. $\begin{array}{l} \max & -\theta_{i}^{T}b_{i} + \theta_{i}^{T}b_{2} \\ \theta_{i} \gtrsim 0 \\ \theta_{2} & \text{s.t.} \quad C^{T} + \theta_{i}^{T}A = \theta_{2}^{T}A_{2} \end{array}$ D Explain Transformation of 141 in Upper Bound. inf cTX+ E [inf 1 (Q2+9) TY : YGRN2, TX) 2 + hx) & Wy)] 3 3 = inf $C^{T}X + \mathbb{E} \left[\left(Q \widehat{z} + q \right)^{T} Y(\widehat{z}) \right]$ st. $x \in X \cdot Y : \Box \to \mathbb{R}^{n_{2}}$ TIXI ST HIX) S WYIEI. YEED $\begin{array}{l} \mathbb{P} \text{ is a discrete dist. with } S \text{ scenarios }, \ \Xi = \{ \varepsilon', \cdots, \varepsilon^{S} \} \\ \text{ inf } c^{\mathsf{T}}x + \sum_{s \in \mathcal{S}_{\mathsf{I}}} p_{\mathsf{S}} \cdot \inf \{ \iota Q \, \widetilde{\varepsilon}^{\mathsf{S}} + 9 \}^{\mathsf{T}} \, y^{\mathsf{S}} \, . \, y^{\mathsf{S}} \in \mathbb{R}^{N^{2}}, \quad \mathsf{T}(x) \, \varepsilon^{\mathsf{S}} + h \, x \} \leq \mathcal{W} \, y^{\mathsf{S}} \} \end{array}$ A = inf $C^T X + \sum_{s \in [S]} P_s (Q E^s + g)^T Y^s$ 1 st. xeX, y: 12', ... 25' > RN2 Series $T(x) \in th(x) \in Wy^{S}$, $\forall s \in [S]$ ALL . $\begin{array}{c} \text{ine with } \underline{\text{Lower Bound.}} \\ \text{Constraint (1)=>} & \underline{(Q-W^T \pi)} & \Xi = \underline{W^T p - q} \\ F & \Xi = g, \forall seE, F = \begin{bmatrix} f_t^T \\ \vdots \\ f_L^T \end{bmatrix} \\ \begin{array}{c} \text{each row: } f_t^T & \Xi = g_t \\ \vdots \\ f_L \end{bmatrix} \\ \begin{array}{c} \text{find this case.} \\ \hline f_L \end{bmatrix} \\ \begin{array}{c} \text{find this case.} \\ \hline f_L \end{bmatrix} \\ \begin{array}{c} \text{find this case.} \\ \hline f_L \end{bmatrix} \\ \end{array}$ Continue with Lower Bound. Assamption E is full dimensional. ٤j Projection (And and a second secon Since ? is full dimesized -> the interval offer projection must be an interval 10 An positive length. -> We work fi's = g, to satisfy for US in the interval -> Connot hold in general case, only if fil= g1 = 0 (If E isn't full - dimensional -> interval will be a part ! -) So the costraint (=) Q=WTIL, WTP=9 3

0	
\bigcirc	$\pi = \begin{bmatrix} \pi_i^T \\ \pi_j^T \end{bmatrix}$ Constraint : $\pi \in \pi_i \neq 0$. $\forall s \in \mathbb{E}$ $ (=) \inf_{\pi_j \neq 0} \pi_j^T \in f_j \neq 0, \forall j \in [1] $
0	∠, \$ξ≤ζ
3	$ \begin{array}{c} \Leftarrow 7 & \text{sup} & 1j & \text{t+} p_j \\ 1j & 3^{30} & \text{st} & -\pi_j = s^{T} \eta_j \end{array} \right\} \xrightarrow{70} \forall j \in [1] $
0	
3	$\geq \sup tr \left(\operatorname{Tw}^{T} \Pi \left(\Xi + uu^{T} \right) \right) + hu_{j}^{T} \pi u + u^{T} \operatorname{Tw}^{T} \rho + hu_{j}^{T} \rho$ s.t. $\Pi \in \mathbb{R}^{J \times k}$, $\rho \in \mathbb{R}^{J}$, $\eta_{j} \in \mathbb{R}^{\mathcal{M}}_{+}$, $\forall j \in [1]$
	$Q = W^{T} \pi, W^{T} f = g$
)	$P_{j} \ge J_{j} t$ $-\pi_{j} = s^{7} N_{j}$
	$Dudize = inf tr(Q^T M) + g^T m + C^T X$
)	and Combine S.t. MER ^{N2XK} , MER ^{N2} , rER+J RER ^{J+K} (LLB)
0	stage problem. $x \in X$ $T(\lambda) + h(x) + Y = Wm$
)	$T(x) \left(z + u u^{T} \right) + h u u^{T} + R = W M$
)	$t_{r^{\gamma}} > 5\rho^{\gamma}$ and all the maximum densities the interaction of the second seco
-	- A CARACTER AND A DEPENDENCE OF A
	- Example: two stoge problem without the first stage.
)	inf E [y(2)] 2. is uniform r.v. on[1,1] y(s). Best office approximate st. y(2) GR
	inf $\notin [Y(\tilde{z})]$ \tilde{z} is uniform r.v. on [-1, 1] $Y(s)$. Best office approximate st. $Y(\tilde{z}) \subseteq R$ $Y(\tilde{z}) \gg \tilde{z}$. $\forall \tilde{z} \in \mathbb{C} = [-1, 1]$
	inf $\notin [Y(\tilde{z})]$ st. $y(\tilde{z}) \in \mathbb{R}$ $y(\tilde{z}) \gg \tilde{z}$. $\forall \tilde{z} \in \mathbb{C}$ $y(\tilde{z}) \gg z \cdot \forall \tilde{z} \in \mathbb{C}$ $y(\tilde{z}) \gg z \cdot \forall \tilde{z} \in \mathbb{C}$ $y(\tilde{z}) \gg z \cdot \forall \tilde{z} \in \mathbb{C}$
))	inf \notin [y(\hat{z})] \hat{z} is uniform r.v. on [1,1] y(s). Best office approximate st. y(\hat{z}) GR y(\hat{z}) $\approx \hat{z}$. $\forall \hat{z} \in \hat{Z}$ y(\hat{z}) $\approx \hat{z}$. $\forall \hat{z} \in \hat{Z}$ $\hat{y}(\hat{z}) \approx \hat{z}$. $\forall \hat{z} \in \hat{Z}$ \hat{z} $\hat{\xi}$
))	inf $\notin [Y(\tilde{z})]$ st. $y(\tilde{z}) \in \mathbb{R}$ $y(\tilde{z}) \gg \tilde{z}$. $\forall \tilde{z} \in \mathbb{C}$ $y(\tilde{z}) \gg z \cdot \forall \tilde{z} \in \mathbb{C}$ $y(\tilde{z}) \gg z \cdot \forall \tilde{z} \in \mathbb{C}$ $y(\tilde{z}) \gg z \cdot \forall \tilde{z} \in \mathbb{C}$
))	inf \notin [y(\hat{z})] \hat{z} is uniform r.v. on [1,1] y(s). Best office approximate st. y(\hat{z}) GR y(\hat{z}) $\approx \hat{z}$. $\forall \hat{z} \in \hat{Z}$ y(\hat{z}) $\approx \hat{z}$. $\forall \hat{z} \in \hat{Z}$ $\hat{y}(\hat{z}) \approx \hat{z}$. $\forall \hat{z} \in \hat{Z}$ \hat{z} $\hat{\xi}$
))	inf \notin [y(\hat{z})] \hat{z} is uniform r.v. on [1,1] y(\hat{z}). Best office approximate $y(\hat{z}) \gg \hat{z}$. $\forall \hat{z} \in \hat{C}$ = [-1, 1] $y(\hat{z}) \gg \hat{z} \cdot \hat{z}$. $\forall \hat{z} \in \hat{C}$ $\#[y(\hat{z})] = 2\int_{0}^{1} \hat{z} \frac{1}{2} d\hat{z} = \hat{z}^{2} _{D}^{1} = \frac{1}{2}$ $\Re[y(\hat{z})] = 1$
))	inf \notin [y(\hat{z})] \hat{z} is uniform r.v. on [1,1] y(\hat{z}). Best office approximate $y(\hat{z}) \gg \hat{z}$. $\forall \hat{z} \in \hat{C}$ = [-1, 1] $y(\hat{z}) \gg \hat{z} \cdot \hat{z}$. $\forall \hat{z} \in \hat{C}$ $\#[y(\hat{z})] = 2\int_{0}^{1} \hat{z} \frac{1}{2} d\hat{z} = \hat{z}^{2} _{D}^{1} = \frac{1}{2}$ $\Re[y(\hat{z})] = 1$
))	inf \notin [y(\hat{z})] \hat{z} is uniform r.v. on [1,1] y(\hat{z}). Best office approximate $y(\hat{z}) \gg \hat{z}$. $\forall \hat{z} \in \hat{C}$ = [-1, 1] $y(\hat{z}) \gg \hat{z} \cdot \hat{z}$. $\forall \hat{z} \in \hat{C}$ $\#[y(\hat{z})] = 2\int_{0}^{1} \hat{z} \frac{1}{2} d\hat{z} = \hat{z}^{2} _{D}^{1} = \frac{1}{2}$ $\Re[y(\hat{z})] = 1$
))	inf \notin [y(\hat{z})] \hat{z} is uniform r.v. on [1,1] y(\hat{z}). Best office approximate $y(\hat{z}) \gg \hat{z}$. $\forall \hat{z} \in \hat{C}$ = [-1, 1] $y(\hat{z}) \gg \hat{z} \cdot \hat{z}$. $\forall \hat{z} \in \hat{C}$ $\#[y(\hat{z})] = 2\int_{0}^{1} \hat{z} \frac{1}{2} d\hat{z} = \hat{z}^{2} _{D}^{1} = \frac{1}{2}$ $\Re[y(\hat{z})] = 1$
))	$inf \notin [U(2)] \qquad \therefore is uniform r.v. on [-1, 1] U(2) \qquad \text{Best office approximate} \\ st. U(2) \in \mathbb{R} \\ U(2) \geq 2 \\ U(2) \geq -2 \\ U(2) = -2 \\ U(2$
))	$inf \notin [U(2)] \qquad \therefore is uniform r.v. on [-1, 1] U(2) \qquad \text{Best office approximate} \\ st. U(2) \in \mathbb{R} \\ U(2) \geq 2 \\ U(2) \geq -2 \\ U(2) = -2 \\ U(2$

Lecture 14. Oct 11)
$\# \Leftrightarrow \inf C^{T} \times + \mathbb{E} \left[(Q^{2} + g)^{T} y(2) \right]$ and slack variable. s.t. $x \in X$, $y(z) \in \mathbb{R}^{N}$, $s(z) \in \mathbb{R}^{J}_{+}$, $\forall z \in \mathbb{C}$)
Two $\xi + h(x) + s(\xi) = W y(\xi)$, $\forall \xi \in \mathbb{Z}$)
<=7 Introduce new variables and add redundant constraints:)
inf $C^{T_{X}} + \underbrace{\mathbb{E}\left[\left(\Omega \widetilde{\varepsilon} + q\right)^{T_{Y}}(\widetilde{z})\right]}_{s \in \mathbb{R}^{N} \times e^{X}} + \underbrace{\mathbb{E}\left[\left(\Omega \widetilde{\varepsilon} + q\right)^{T_{Y}}(\widetilde{z})\right]}_{s \in \mathbb{R}^{N}} + \underbrace{\mathbb{E}\left[\Omega \widetilde{\varepsilon} + q\right]}_{s \in \mathbb{R}^{N$)
MER", MERNINK, rER; RERJIK)
T(x) E + h(x) + S(E) = Wy(E)、 HE G 巳 臣[y(E)]=m , 臣[y(E)を7] = M)
$\mathbb{E}\left[S(\tilde{z})\right] = r, \mathbb{E}\left[S(\tilde{z})\tilde{z}^{T}\right] = R$]
$\mathbb{E}\left[\left(Q\widetilde{z}+g\right)^{T}Y(\widehat{z})\right]_{\mathcal{T}}\varepsilon^{T}Q^{T}y(\varepsilon)=\left(r\left(Q^{T}y(\varepsilon)\right)\overline{\varepsilon}^{T}\right)$	
$=\mathbb{E}\left[tr(Q^{T}y(\tilde{z})\tilde{z}^{T})+g^{T}y(\tilde{z})\right]$	
$= tr (Q^{T} \in [Y(\tilde{z}) \tilde{z}^{T}) + g^{T} \in [Y(\tilde{z})]$ = tr (Q^{T} M) + g^{T} m	
The objective becomes: in $f tr(O^TM) + g^Tm + C^TX$, same as lower bound	
\Leftarrow inf $tr(Q^TM)+g^TM+C^TX$)
s.t. xex, y(s) eR ^{N2} , S(2) eR+, V2CE meR ^{N2} , MER ^{N2AK} , reR+, RER ^{Jak}	
$T(x) \in + h(x) + S(s) = Wy(s) \cdot H \in \mathbb{C}$ $T(x) \in \Sigma^{T} + h(x) \in \Sigma^{T} + S(s) \in \mathbb{C}^{T} = W_{H}(s) \in \mathbb{C}^{T}, \ H \in \mathbb{C} = \mathbb{C}$	A
S(E) (t-SE) ^T ≥O, YEGE (M&) Because S(E)≥O, YEGE=[EER ^E , SEST E[Y(E)]=M, E[Y(E) E ^T]=M.	
$\mathbb{E}\left[S(\hat{z})\right] = \Gamma, \mathbb{E}\left[S(\hat{z})\hat{z}^{\dagger}\right] = R.$	
The second terms later	J
Take expectation of $(\vee) \Leftrightarrow T(x) \mathcal{M} + h(x) + r = Wm$ Take expectation of $(\vee) \Leftrightarrow T(x)(\Sigma + \mathcal{M}^T) + h(x) \mathcal{M}^T + R = WM$	
Take expectation of 1VVV => trTZSRT)
Other two become redundant, we get the lower bound again!	3
	3
	1
	9

Monte Carlo S
inf
$$E_p [f_0]_{xex}$$

For any fixed
due to multi-
 $E_p [f_0(x, \bar{x})]$
How to evalue
- analytical
- numerical
- Monto
Def (almost
Def (almost
Def (almost
Me approximation
We have for
1) E [Vsu
2) Jim Vs
2) Jim Vs
3) JS (Vs
 (1)
 (1)

bite Carlo Scompting Method
inf
$$E_p[f_0(x, z)]$$

be General rendam function.
For any fixed x e X, computing $E[f_0(x, z)]$ is difficult
due to multidimensional integration.
 $E_p[f_0(x, z)] = \int_{\mathbb{R}^d} f_0(x, z) P(z) dz_1 \dots dz_k$
 $= \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f_0(x, z) P(z) dz_1 \dots dz_k$
 $= \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f_0(x, z) P(z) dz_1 \dots dz_k$
 $= analytical integration (exact but rarely possible in protice)$
 $= analytical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact but rarely possible in protice)$
 $= numerical integration (exact is independent of K)$
 $= numerical integration (exact is $f_1(x,z)$) = $f_1(x,z)$
 $= f_1(x,z)$ = $f_2(x,z)$ = $f_2(x,z)$ = $f_2(x,z)$ = $f_1(x,z)$ = $f_2(f_1(x,z))^2$ = $f_1(f_1(x,z))^2$
 $= f_1(f_2(x,z)) = f_2(f_2(x,z)) = f_2(f_2(x,z)) = f_2(f_1(x,z))^2$
 $= f_1(f_2(x,z) - V(x)) = f_2(f_2(x,z)) = f_2(f_$$

$$i) \lim_{S \to \infty} \inf_{x \in X} |V_{S}(x)|^{2} \to \inf_{x \in X} |V(x)| \quad a.s.$$

$$i) \int_{S \to \infty} \inf_{x \in X} |V_{S}(x)|^{2} - [\inf_{x \in X} |V(x)|] \quad d^{2} \to N(0, 6^{2})$$

$$i) \lim_{S \to \infty} \inf_{x \in X} |V_{K}(x)|^{2} \to \inf_{x \in X} |V(x)| \quad a.s.$$
Example:

$$\inf_{x \in \{-1,1\}} \mathbb{E} \left[\int_{0}^{1} (x, \hat{z}) \right] \quad where \quad \int_{x \in X} (x, \hat{z}) = \sum x.$$

$$x \text{ is } Sca (ar), \quad \hat{z} \sim N(0, 1)$$

$$= \inf_{x \in \{-1,1\}} \frac{1}{s} \sum_{s \in [0]} \sum^{s} \chi$$

$$= 0$$

$$\inf_{x \in \{-1,1\}} \frac{1}{s} \sum_{s \in [0]} \sum^{s} \chi$$

$$= 0$$

$$\lim_{x \in \{-1,1\}} \frac{1}{s} \sum_{s \in [0]} \sum^{s} \chi$$

$$= -\left[\frac{1}{s} \sum_{x \in [x]} \sum^{s} \right]$$

$$\sum_{s \in [1]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) = \sum x.$$

$$\sum_{x \in [x]} \sum^{s} (x, \hat{z}) =$$

 \bigcirc

 \bigcirc

0

Provi: Let
$$x_{5}^{u} \in \operatorname{conjint} V_{5}(v)$$
 & $x \neq u_{KX}$
 $x \in X$
 $x \in$

Lecture 16. Oct. 13 Proof Let 2 be a limit point of [Xs*] xs* E arginf Vs(x) By the closedness of X, we have $\widehat{x} \in X$. we have $\lim_{s \to \infty} V(x_s^*) = V(\hat{s})$ where $\lim_{s \to \infty} \pi_s^s = \hat{\pi}$ (pick a subsequence) $O = \frac{11}{570} \left| V(7s') - V(7') \right|$ (2) $= |V(\hat{x}) - V(x^*)| \qquad (\text{Theorom it})$ ------Remark: A more powerful type of convergence that yields the same results with more relaxed conditions is epi-convergence Rate of convergence JS (VS(X) - V(X)) - N (0. 60)) (CLT) JS (inf VSIX) - inf VIX) d? N (0,62 xx) where x* E anginf VIX), XEX If x * is not unique then which one to use? _ Let U= arginf V(x) uplied solutions of true problem Fact: If X is compact & f. sutisfies the Lipschitz condition. $\exists q: \Xi \rightarrow R_{+}$ such that $E[g^{2}(\tilde{z})] < +\infty$ and 1 fo(x, 2) - fo(y, 2) / = g(2) ||x-y||, V x, y = X a.S. then by defining $\tilde{p}(\bar{x}) \sim N(0, 6^2(\bar{x}))$, we have, JS (inf VSIM - inf V(X)) do int P(A) If X* E ang inf Vir) is unique, then Is (inf Vsw) - inf Vir) d (1x*) Taking expectation. $JS \left(E \left[\inf_{x \in x} V_{SUS} \right] - E \left[\inf_{x \in x} V_{US} \right] \longrightarrow E \left[\inf_{x \in x} \tilde{P}(\bar{x}) \right]$ goes to o at a rate of t 0 If x* is unique: bias term goes to O N5 (E[inf Usus] - E[inf Usu]) → O at a rate of \$ (Shopire) of problem inf VIX), VIX)= E [fitz =] Estimating solution quality Candidate solution REX, we would like to assess its quality. 0 Given REX and de (0,1). We want to find a confidence interval [0, \Im], so that: $P(V(3)) - \inf_{x \in X} V(x) \in [0, \tilde{S}]) \approx 1 - \alpha$ We want to construct this. $P(V(3)) - \inf_{x \in X} V(x) \in [0, \tilde{S}]) \approx 1 - \alpha$ 0 0 $\Rightarrow \mathbb{P}\left(V(\widehat{x}) - \inf_{x \in X} V(x) \le \widehat{\delta} \right) \approx |-\alpha|$

Lecture 1]. Oct. 20

Observation : we have E [inf Vsix) & inf V(x)

$$\Rightarrow V(\hat{x}) - \inf_{x \in \hat{x}} V(x) \leq V(\hat{x}) - \mathbb{E} \left[\inf_{x \in \hat{x}} V_{S(x)} \right]$$

true optimality gap = $\mathbb{E} \left[V_{S}(\hat{x}) - \inf_{x \in \hat{x}} V_{S(x)} \right]$
empirical optimality gap

Maybe we can study the asymptotic property of empirical optimality gap to derive the CI.

3

3

3

)

0

0

0

0

0

٢

$$\frac{1}{\sqrt{5}} \left(\frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \right) = \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}}$$

Multiple Replications Procedure (MRP) (Mak, Mortop & Wood 1999) We will have L batches of S samples and do the analysis using these L batches. Let $\tilde{\rho} = (\tilde{z}^2, \tilde{z}^2, ..., \tilde{z}^S)^T$ $G(R, \tilde{\rho}) = Vs(R) - \hat{z} \tilde{z} Vs(X)$ $= \frac{1}{5} \sum_{sets} f_{\bullet}(\hat{x}, \tilde{z}^s) - (\hat{i}nf \frac{1}{5} \sum_{sets} f_{\bullet}(X, \tilde{z}^s))$

Take L iid samples of \tilde{p} and consider the SAA of $E[G(\mathcal{R},\tilde{p})] - E[Vs(\mathcal{R}) - \inf_{x \in X} V_{SW}]$ $GL(\mathcal{R}) = L \frac{1}{L \in [L]} G(\mathcal{R}, p^{L})$ We have: (unbiased estimator) $E[GL(\mathcal{R})] = E[G(\mathcal{R},\tilde{p})] = E[Vs(\hat{\mathcal{R}}) - \inf_{x \in X} V_{SW}]$ Morever by CLT: $II (GL(\mathcal{R}) - E[V_{SW}) - \inf_{x \in X} V_{SW}]) \xrightarrow{A} N(0.6g^{2}(\hat{\mathcal{R}}))$ where $: Oq(\mathcal{R}) = Vcr(G(\mathcal{R},\tilde{p}))$

L730 For each k, we need to solve an optimization problem. We can paratize all these optimization problems. S should be hundreds or themands.

Because of symmetry of $N(0, 6g^2(\hat{x}))$. If $(E[V_{5L}\hat{x}] - \inf_{x \in X} V_{5(x)}] - G_{4}(x)) \xrightarrow{d_{5}} N(0, 6g^2(\hat{x}))$ For large enough L: $E[V_{5L}\hat{x}] - \inf_{x \in X} V_{5(x)}] \approx G_{1}(x) + (6g^{(3)}/\pi) \cdot \tilde{\omega}$ where $\tilde{\omega} \sim N(0, 1)$ We don't have this number $1-E_{1}$

 $G_{1}(\mathbf{\hat{x}})$

For lorge L: $\frac{E[V_{SIX} - \inf_{X \in X} V_{SIX}] - G_{L}(\hat{X})}{V} \xrightarrow{\text{Approx}} N(0, 1)$? >69 (2)/ JE We use the sample variance as a surrogate. $= \frac{1}{2} = \frac{1}{1-1} \frac{1}{E_{\text{FLJ}}} \left(G(\hat{x}, p^{\text{E}}) - GL(\hat{x}) \right)^2$ then for large k : -----T = E[VS(R) - xex VS(X)] - GL(R) Approx t- distribution with L-1 degree of freedom. SVL(R) /JE $P(\tilde{\Psi} = \underline{T_{1-1,a}}) \approx 1 - \alpha.$ (1-0) quantile of a t-dist with L-1 degrees of 1-d 0 t_1.d W .7-G freedom. $\mathbb{P}\left(\frac{\mathbb{E}\left[V_{S}(\hat{x}) - \frac{inf}{xex}V_{S}(x)\right] - GL(\hat{x})}{SV_{L}(\hat{x})/J}\right) \approx 1 - \alpha$ $\Rightarrow P(E[V_{S}(x) - \inf_{x \in x} V_{S}(x)] S G_{L}(x) + t_{L-1,\alpha} \frac{SVL(x)}{M}) \approx 1-\alpha$ Since V(Q) - inf VSUS = E [VSQ) - inf USUS] $\Rightarrow \mathcal{P}(V\mathcal{R}) - \frac{ief}{xe\chi} V_{S}(x) \leq \underbrace{G_{1}(\mathcal{R}) + \frac{t_{1,s} \cdot SV_{1}(\mathcal{R})}{NL}}_{S} (\mathcal{R}) + \underbrace{\frac{1}{\sqrt{1-s}} \cdot SV_{1}(\mathcal{R})}_{S} (\mathcal{R}) + \underbrace{\frac{1}{\sqrt{$ Procedure for estimating solution quality Input - a candidate solution $\widehat{\mathbf{x}} \in X$ ------- tolerance d batch size S - Sample size L Output: approximate (1-a)-level confidence interval [0.8] on the optimality gap Vix) - if Vix) Steps: 2) Crenerate L batches of size S $\Sigma'' = \Sigma'^{5} - \ell'$ $\Sigma^{21}, \quad \Sigma^{25} - \ell^{2}$ $\varepsilon^{Li} \cdots \varepsilon^{Ls} - \rho^{L}$ 2) Compute: $G(\bar{x}, p^{l}) = \frac{1}{3} \sum_{s \in [S]} f_0(\bar{x}, z^{ls}) - \inf_{x \in X} \frac{1}{3} \sum_{s \in [S]} f_0(x, z^{ls}) \cdot \forall l \in [L]$ 3) Let . $G_L(\vec{x}) = \frac{1}{2} \overline{\xi}_{LL} G(\vec{x}, e^{\ell})$ $SV_{L}^{\perp}(\mathfrak{D}) = - \operatorname{Let} \left[G(\mathfrak{D}, \mathfrak{C}) - G_{L}(\mathfrak{D}) \right]^{2}$

0

0

0

0

0

)

0

0

C

	J
4) S=GL(R) + tL+, a SVL(R)/JI [0.5] is the LI-a) level confident interval on V(x) - inf V(x))
)
CI is wide if: 1) \Re is a poor solution: $V(\Re) - \inf_{x \in X} V(\aleph)$ is large)
2) inf VW - inf VsW) is large, meaning that we have large negative bias)
E [int Vsub] << int Vub . (CI also wide)	9
3) large sample error $t_{L-1,d}$ SUL(\mathcal{R})/ \mathcal{I} (rare to be the primary contribution))
	3
Remedy: 1) Improve the quality of approx scheme for obtaining \hat{x}	3
2) Increase S. 3) Increase S or L.	0
* Remark: Increasing S is more expansive because problem becomes harder.	J
Recommendation in practive is to fix $L = 20 - 30$ to induce CLT)
	0
)
	0
	0
)
	3
	0
	and the second se
	3
	0
	0
	I
	3

Lecture 16. Oct. 18

Proof: Let
$$\hat{x}$$
 be a limit point of $|X_s^*|$ $x_s^* \in \underset{x \in X}{\operatorname{arginf}} V_{S(X)}$
By the closedness of X , we have $\hat{x} \in X$.
Since X is finite or $V(x)$ is continuous on X
we have: $\lim_{s \to \infty} V(x_s^*) = V(\hat{x})$
where $\lim_{s \to \infty} \chi_s^* = \hat{\pi}$ (pick a subsequence)
 $o = \lim_{s \to \infty} |V(x_s^*) - V(x^*)|$
 $= |V(\hat{x}) - V(x^*)|$ (Theorem iii)

Remark: A more powerful type of convergence that yields the same results with more relaxed conditions is <u>epi-convergence</u>

 $\frac{Rate of convergence}{JS(V_{S(X)} - V_W)} \xrightarrow{A} N(0.6^{\frac{1}{2}}) \qquad (CLT)$ $\frac{JS(V_{S(X)} - V_W)}{JS(xe_X V_{S(X)} - xe_X V_W)} \xrightarrow{d_1^2} N(0.6^{\frac{1}{2}} x^{\frac{1}{2}}) \qquad \text{where } x^* \in arginf V(x), xe_X$ $If x^* is not unique then which one to use ?$

Let U= arginf V(x) uptimel solutions of true problem

Fact: If X is compact & for satisfies the Lipschitz condition: $\exists g: \Xi \rightarrow \mathbb{R}_{+} \text{ such that } \mathbb{E}[g^{2}(\overline{z})] < +\infty$ and $|f_{0}(\overline{x}, \overline{z}) - f_{0}(\underline{y}, \overline{z})| \leq g(\overline{z}) ||\overline{x}-\underline{y}||$, $\forall \overline{x}, \underline{y} \in X$ a.s. then by defining $\tilde{p}(\overline{x}) \sim N[0, 6^{2}(\overline{x})]$, we have: $\int_{\overline{x} \in X} (\inf_{x \in X} V_{S(\overline{x})} - \inf_{x \in X} V(x)) definint \tilde{p}(\overline{x})$

If X* E arginf Vix) is unique, then : IS (inf Vsix) - inf Vix)) d P(x*)

Taking expectation. $JS \left(E\left[\inf_{x \in X} V_{SVD} \right] - E\left[\inf_{x \in X} V_{VD} \right] \longrightarrow E\left[\inf_{x \in X} \tilde{P}(\bar{x}) \right]$ bias term goes to o at $<math>E\left[\inf_{x \in X} \tilde{P}(\bar{x}) \right]$

If x* is unique: Just (E[inf Usux] - E[inf Vou]) -> 0 at a rate of \$\frac{1}{2}\$ (Shopiro)

Estimating solution quality of problem inf V(x). $V(x) = \mathbb{E}[f_{0}(x, \tilde{x})]$ Candidate solution $\mathcal{R} \in X$, we would like to assess its quality. Circle $\mathcal{R} \in X$ and $\alpha \in \{0, 1\}$. we want to find α confidence interval $\begin{bmatrix} 0, & \inf_{x \in X} V(x) + \tilde{S} \end{bmatrix}$, so that: $P(V(\mathcal{R}) - \inf_{x \in X} V(x) \in [0, \tilde{S}]) \approx 1 - \alpha$ We want to Construct this. indic explorations $<math>P(V(\mathcal{R}) - \inf_{x \in X} V(x) \leq \tilde{S}) \approx 1 - \alpha$

lecture 17. Oct 20	
Observation: we have $\mathbb{E}\left[x \in V_{S(X)}\right] \leq \inf_{X \in X} V_{(X)}$	
$\Rightarrow V(\hat{x}) - \inf_{x \in X} V(x) \leq V(\hat{x}) - E\left[\inf_{x \in X} V_{S(x)}\right]$ true optimality gap = $E\left[V_{S(\hat{x})} - \inf_{x \in X} V_{S(x)}\right]$ empirical optimality gap	
	(C)
Maybe we can study the asymptotic property of empirical optimality gap to derive the CI.	
However: $JS (V_{S(R)} - V_{(N)}) \xrightarrow{d} N(0, 6\overline{v_{S}})$ $JS (\frac{int}{xex} V_{S(N)} - \frac{int}{xex} V_{(N)}) \xrightarrow{d} \frac{int}{xex} N(0, 6\overline{v_{S}}) $	
M3 (xex Vs (x) - xex V(3) - xex / (0.003))	
Multiple Replications Procedure (MRP) (Mak, Mortos & Wood 1999) We will have K batches of S samples and do the analysis using these K batches. Let $\tilde{P} = (\tilde{z}^2, \tilde{z}^2, \dots, \tilde{z}^s)^T$	
$G(\hat{\pi}, \hat{\rho}) = V_{S}(\hat{\pi}) - \hat{xet} V_{S}(x)$ = $\frac{1}{5} \sum_{setS_{1}} f_{\bullet}(\hat{\pi}, \hat{z}^{s}) - (\hat{net} + \frac{1}{5} \sum_{setS_{1}} f_{\bullet}(x, \hat{z}^{s}))$	3
Tate K iid samples of p and consider the SAA of	0
$\mathbb{E}\left[G\left(\mathcal{R}, \gamma\right)\right] \cdot \mathbb{E}\left[V_{S}\left(\mathcal{R}\right) - \inf_{v \in V} V_{S} w\right]$ $G_{\mu}(\mathcal{R}) = \mathcal{F} \inf_{v \in T \times J} G\left(\mathcal{R}, p^{\mu}\right)$	0
We have: (unbrased estimator) $\mathbb{E}\left[G(Q) = \mathbb{E}\left[G(Q) = \mathbb{E}\left[G(Q) = \mathbb{E}\left[G(Q)\right] + \mathbb{E}\left[G(Q) = \mathbb{E}\left[G(Q)\right]\right]\right]$	0
$\mathbb{E}\left[G_{k}(\mathcal{X})\right] = \mathbb{E}\left[G\left(\mathcal{X}, \tilde{\rho}\right)\right] = \mathbb{E}\left[V_{S}(\mathcal{X}) - \frac{1}{2\mathcal{Y}}V_{S}V_{S}\right]$ Morever by CLT:	٩
$ \sqrt{K} \left(G_{K}(\hat{x}) - \frac{E[V_{S}(\hat{x}) - \frac{inf}{xex}V_{S}(x)]}{\sum} \right) \xrightarrow{A} N(0, 6g^{2}(\hat{x})) $ $ where : Og(\hat{x}) = Ver(G(\hat{x}, \tilde{p})) $	
K730 For each k we need to solve an optimization problem. We can paratize all	
these optimization problems. S should be hundreds or thousands.	
Because of symmetry of N(0, 6g ² (2)).	9
$J_{\mathbf{k}} \left(\mathbb{E} \left[V_{\mathbf{S}}(\mathbf{x}) - \bigcup_{\mathbf{k}} V_{\mathbf{S}}(\mathbf{x}) \right] - G_{\mathbf{k}}(\mathbf{x}) \right) \xrightarrow{d} N(o, \ o_{\mathbf{y}}(\mathbf{x}))$	
For large enough K: $E[V_{S1}R) - \frac{1}{Nex}V_{S1}X)] \approx G_{F}(R) + (69^{(N)}/JR) \cdot \widetilde{W}$ where $\widetilde{w} \sim N(^{\circ}, 1)$	
We don't have	۲
this number	
 G [*] (x)	

For longe k:

$$\frac{\mathbb{E}\left[\left(V\pi\emptyset - \frac{i}{4\pi\xi}\right)V(x)\right] - G_{k}(\hat{X})}{|\hat{x}|^{2} - G_{k}(\hat{X})|^{2}} \xrightarrow{Primer} \mathcal{N}(x, 1)$$
We use the sample variance as a surregate.

$$SV_{k}^{k}(\hat{x}) = \frac{1}{k^{2}+1} \frac{1}{k^{2}k^{2}k(1)} \left(G(\hat{x}, \beta^{k}) - G^{k}(\hat{x})\right)^{2}$$
then for large k:

$$\tilde{\Psi} = \frac{\mathbb{E}\left[\left(V_{k}\hat{x}\right) - \frac{i}{k^{2}}\sqrt{V(x)}\right] - G_{k}(\hat{x})}{|\hat{x}|^{2}} \xrightarrow{Prime} 1 - d\hat{x}^{2}} \xrightarrow{Prime} \frac{1}{k^{2}} - d\hat{x}^{2}} \frac{1}{k^{2}(x)} \xrightarrow{I - d} \frac{1}{k^{2}} \frac{$$

•

	0
4) S=GE(R) + tE+, a SUE(R)/JK [0.5] is the LI-a) level confident interval on V(x)- inf V(x)	0
The second	0
<u>CI</u> is wide if: 1) \Re is a poor solution: $V(\Re) - \inf_{X \in X} V(K)$ is large	0
2) inf VW - inf VSW) is large, meaning that we have large negative bias E[inf VSW] << inf VW, (CI also wide)	
E [int Vsu)] << int Vux) (CI also wide)	3
3) large sample error $t_{K-1,d}$ $SV_{k}(R)/JK$ (rare to be the primary contribution)	9
i) Engle service error operiod septemble (letter bree printing) entitient)	0
Remedy:	-
1) Improve the quality of approx scheme for obtaining \hat{x}	
2) Increase S.	
3) Increase S or K. * Remark: Increasing S is more expensive because problem becomes harder.	0
Recommendation in practive is to fix K = 20 - 30 to induce CLT	
5 (201 (200) A (200)	۲
- 11 June 2010 Collins and the U.S. A second a collect Confidence Andrews	0
	0
- 11 June 2010 Collins and the U.S. A second a collect Confidence Andrews	9 9 9
	0 0 0

	Lecture 18. Oct. 25
	Bender's decomposition for 2- stage problems with discrete distributions.
	$\inf_{x \in X} c^{T}x + E[z(x, \tilde{z})] $ (25)
~	where $z(x, \xi) = \inf (0\xi + g)^T y$ $Z_d(x, \xi) = \sup (Tw\xi + hw)^T \pi$
	s.t. $y \in \mathbb{R}_{+}^{n}$ Two $\xi + h(x) = Wy$ $Q\xi + q \gg W^{T}\pi$
	$\inf_{x \in X, y', y', \cdots, y' \in \mathbb{R}^{N_{1}}_{+}} \int_{x \in X} \int_{y', y', \cdots, y' \in \mathbb{R}^{N_{1}}_{+}} \int_{y' \in Y} \int_{y' Y} \int_{y' \in Y} \int_{y' Y} \int_{y' \in Y} \int_{y' Y} \int_{y' y' \in Y} \int_{y' Y} $
	$T(x) = Wy^{s} + h(x) = Wy^{s} + Vs \in [s]$
۲	$\frac{1}{10} r f c^{7} x + P' (Q z' + g)^{7} y' + P^{2} (Q z' + g)^{7} y^{2} + \cdots + P^{5} (Q z^{5} + g)^{7} y^{5}$
	S.t. $x \in X$, y', y'' , $y'' \in \mathbb{R}^{N_2}_+$
õ	Tix) E' → hix) = Wy' · · · · · · · · · · · · · · · · · · ·
	$T(x) S^2 + h(x) = Wy^2 \qquad \qquad$
	$Tw z^{S} + hw) = Wy^{3}$
	For a fixed x EX, the problem decomposes into S smaller subproblems
	=> algorithm that exploits this.
0	=> algorithm that exploits this.
	그는 것 같은 것에 들었다. 이 것 같은 것
	=> algorithm that exploits this. Idea: we are going to reduce the number of voriables but increase considerably
	Idea: we are going to reduce the number of voriables but increase considerably the number of constraints. Idea: delayed constraint generation.
	 ⇒ algorithm that exploits this. Idea: we are going to reduce the number of voriables but increase considerably the number of constraints. ⇒ delayed constraint generation. How to reduce the # of variables? Let TT^S = { π ∈ R³ Q S^S + g > W^TT }. ∀se [S]
	 ⇒ algorithm that exploits this. Idea: we are going to reduce the number of voriables but increase considerably the number of constraints. ⇒ delayed constraint generation. How to reduce the # of variables? Let π^s = 1 π ∈ R³. QS^s + g ⇒ W^T π J. Use [S]
	⇒ clgorithm that exploits this. Idea: we are going to reduce the number of voriables but increase considerably the number of constraints. ⇒ delayed constraint generation. <u>How to reduce the # of variables?</u> Let $T^{S} = \{ \pi \in \mathbb{R}^{3}, QS^{S} + g = W^{T}T \}$. Use [S] Observations: - for a fixed S^{S} , the feasible set is a polytope with finitely (but can be exponentially) many extreme points.
	⇒ algorithm that exploits this. Idea: we are going to reduce the number of variables but increase considerably the number of constraints. ⇒ delayed constraint generation. <u>How to reduce the # of variables?</u> Let $\Pi^{S} = I \Pi \in \mathbb{R}^{3}$. $Q \Sigma^{S} + g \Rightarrow W^{T} \Pi Y$. Use [S] Observations: - for a fixed Σ^{S} , the feasible set is a polytope with finitely (but can be exponentially) many extreme points. - it doesn't depend on X .
	⇒ algorithm that exploits this. Idea: we are going to reduce the number of variables but increase considerably the number of constraints. ⇒ delayed constraint generation. <u>How to reduce the # of variables?</u> Let $TT^{S} = \int \pi \in \mathbb{R}^{3}$. $QS^{S} + g = W^{T}TY$. Use [S] Observations: - for a fixed S^{S} , the feasible set is a polytope with finitely (but can be exponentially) many extreme points. - it doesn't depend on \exists . - TT^{S} is bounded with extreme points TT_{S}^{S} . TT_{S}^{S} . TT_{S}^{S} . (where L depends on S L can be exponentially in N2 & J.)
	$\Rightarrow clgorithm that exploits this.$ $Idea: we are going to reduce the number of variables but increase considerablythe number of constraints. \Rightarrow delayed constraint generation. \frac{How to reduce the # of variables?}{Let TT^{S} = \frac{1}{1} \pi \in \mathbb{R}^{3}. Q \Sigma^{S} + g \Rightarrow W^{T} \pi Y. Use [S]} Observations.: - for a fixed \Sigma^{S} the feasible set is a polytope with finitely (but canbe exponentially) many extreme points. - \frac{\pi^{S}}{\pi^{S}} is bounded with extreme points. - \frac{\pi^{S}}{\pi^{S}} is bounded with extreme points \pi^{S}. \pi^{S} \pi^{S}. \pi^{S} \pi^{S} the feasible is a polytope with finitely (but canbe exponentially) many extreme points. - \frac{\pi^{S}}{\pi^{S}} is bounded with extreme points \pi^{S}. \pi^{S} \pi^{S}. \pi^{S} \pi^{S} the feasible is a polytope with finitely (but canbe exponentially) many extreme points. - \frac{\pi^{S}}{\pi^{S}} is bounded with extreme points \pi^{S}. \pi^{S} \pi^{S}. \pi^{S} the feasible is a polytope with finitely (but canbe exponentially) many extreme points. - \frac{\pi^{S}}{\pi^{S}} is bounded with extreme points \pi^{S}. \pi^{S} \pi^{S}. \pi^{S} the fourtion the exponentially in N_{2} \times T_{2}$
	⇒ algorithm that exploits this. Idea: we are going to reduce the number of variables but increase considerably the number of constraints. ⇒ delayed constraint generation. How to reduce the # of variables? Let $TT^{S} = \int \pi \in \mathbb{R}^{3}$. $QS^{S} + g \gg W^{T}T^{T}$. Use [S] Observations: - for a fixed. S^{S} the feasible set is a polytope with finitely (but can be exponentially) many extreme points. - TS is bounded with extreme points. - TS is bounded with extreme points. - TS is bounded with extreme points. - TS is bounded on S . - TS is bounded to the exponentially in $N_2 \times J$. - TS is provide TS in S . - TT is TS is provided to TS . - TT is TS in S in S . - TT is TT is TT is TT in TT . - TT is TT is TT if TT is TT if TT is TT if TT is TT . - TT is TT if TT is TT if TT if TT is TT if TT is TT . - TT is TT if TT is TT if TT is TT if TT if TT is TT if TT is TT if TT is TT if TT if TT is TT if TT is TT if TT is TT if TT if TT is TT if TT is TT if TT if TT is TT if TT is TT if TT if TT is TT if TT if TT is TT if TT is TT if TT if TT if TT is TT if TT if TT is TT if TT is TT if TT if TT if TT is TT if TT if TT if TT is TT if TT i
	⇒ algorithm that exploits this. Idea: we are going to reduce the number of variables but increase considerably the number of constraints. ⇒ delayed constraint generation. How to reduce the # of variables? Let $TT^{S} = \int \pi \in \mathbb{R}^{3}$. $QS^{S} + g \gg W^{T}T^{T}$. Use [S] Observations: - for a fixed. S^{S} the feasible set is a polytope with finitely (but can be exponentially) many extreme points. - TS is bounded with extreme points. - TS is bounded with extreme points. - TS is bounded with extreme points. - TS is bounded on S . - TS is bounded to the exponentially in $N_2 \times J$. - TS is provide TS in S . - TT is TS is provided to TS . - TT is TS in S in S . - TT is TT is TT is TT in TT . - TT is TT is TT if TT is TT if TT is TT if TT is TT . - TT is TT if TT is TT if TT if TT is TT if TT is TT . - TT is TT if TT is TT if TT is TT if TT if TT is TT if TT is TT if TT is TT if TT if TT is TT if TT is TT if TT is TT if TT if TT is TT if TT is TT if TT if TT is TT if TT is TT if TT if TT is TT if TT if TT is TT if TT is TT if TT if TT if TT is TT if TT if TT is TT if TT is TT if TT if TT if TT is TT if TT if TT if TT is TT if TT i
	⇒ algorithm that exploits this. Idea: we are going to reduce the number of variables but increase considerably the number of constraints. ⇒ delayed constraint generation. How to reduce the # of variables? Let $TT^{S} = \int \pi \in \mathbb{R}^{3}$. $QS^{S} + g \gg W^{T}TT$ J. Use [S] Observations: - for a fixed S^{S} , the feasible set is a polytope with finitely (but can be exponentially) many extreme points. - it doesn't depend on \Im . - TT^{S} is bounded with extreme points. - TT^{S} is bounded with extreme points TT^{S} . TT^{S} . - TT^{S} is bounded with extreme points TT^{S} . TT^{S} . - TT^{S} is bounded on \Im . - TT^{S} is bounded on \Im . - TT^{S} is bounded on S . - TT^{S} is bounded on \Im . - TT^{S} is bounded to it extreme points TT^{S} . TT^{S} . - TT^{S} is bounded on \Im . - TT^{S} is bounded to it extreme points TT^{S} . - TT^{S} is bounded for TT^{S} . - TT^{S} is bounded to it extreme points TT^{S} . - TT^{S} is bounded for \Im . - TT^{S} is TT^{S} . - TT^{S} is TT^{S} . - TT^{S} is TT^{S} . - TT^{S} . - TT^{S} is TT^{S} . - TT^{S}

$$(x) = \inf_{x \in X} OX + \sup_{x \in X_1} p^{x} E(x, z^{2})$$

$$= \inf_{x \in X} OX + \sup_{x \in X_1} p^{x} \max_{\substack{k \in X_1 \\ k \in X_2}} (Tu_{X})^{x} S^{x} + h(x_{1})^{T} T_{x}^{x}$$

$$= \inf_{x \in X} CX + \sum_{x \in X_1} p^{x} p^{x} f^{x}$$

$$= \inf_{x \in X} CX + \sum_{x \in X_1} p^{x} p^{x} f^{x} + \sum_{\substack{k \in X_1 \\ k \in X_1}} (Tu_{X})^{x} S^{x} + h(x_{1})^{T} T_{x}^{x}$$

$$= \inf_{x \in X} CX + \sum_{x \in X_1} p^{x} p^{x} f^{x} + \sum_{\substack{k \in X_1 \\ k \in X_1}} (Tu_{X})^{x} f^{x} + p^{x} f^{x} f^{x} + p^{x} f^{x} + p^{x} f^{x} + p^{x} f^{x} f^{x} + p^{x} f^{x} +$$

• Step 2: For oil SGIS] solve:

$$E_A(\widehat{x}, \varepsilon^{5}) = \sup (Tin \varepsilon^{5} + hus)^{T} \cdot T$$
s.t. $T \in \mathbb{R}^{3}$

$$(\Sigma^{5} + g > W^{T} T)$$

$$H E_A(\widehat{x}, \varepsilon^{5}) < \widehat{y}^{2}, \quad \forall s \in I = J$$

$$terminate x^{4} = \widehat{x} \text{ is the optimal solution}$$

$$Otherwise go to step 3.$$

$$(Iny S^{5} + hus)^{T} Ti^{5} \leq Y^{5}, \quad \forall s \in I = J$$

$$(Tin s^{5} + hus)^{T} Ti^{5} \leq Y^{5}, \quad \forall s \in I = J, \quad \forall t \in I = J$$

$$(Tin s^{5} + hus)^{T} Ti^{5} \leq Y^{5}, \quad \forall s \in I = J, \quad \forall t \in I = J$$

$$(Tin s^{5} + hus)^{T} Ti^{5} \leq Y^{5}, \quad \forall s \in I = J, \quad \forall t \in I = J$$

$$(Tin s^{5} + hus)^{T} Ti^{5} \leq Y^{5}, \quad \forall s \in I = J, \quad \forall t \in I = J$$

$$(Tin s^{5} + hus)^{T} Ti^{5} \leq Y^{5}, \quad \forall s \in I = J, \quad \forall t \in I = J$$

$$(Tin s^{5} + hus)^{T} Ti^{5} \leq Y^{5}, \quad \forall s \in I = J, \quad \forall t \in I = J$$

$$(Tin s^{5} + hus)^{T} Ti^{5} \leq Y^{5}, \quad \forall s \in I = J, \quad \forall t \in I = J$$

$$Ti = \{T \in \mathbb{R}^{3}, A T \leq b\}$$

$$Ti = \{T \in \mathbb{R}^{3}, A T \leq b\}$$

$$Ti = \{T \in \mathbb{R}^{3}, A T \leq b\}$$

$$Ti = \{T \in \mathbb{R}^{3}, A T \leq b\}$$

$$Def (Actione row): For any polyhedral set TI = [T \in \mathbb{R}^{3}, A T \leq b], \quad Ti = T \in \mathbb{R}^{3}, A T \leq b]$$

$$Ti = \begin{bmatrix} C & A : II + P \\ A^{5} \begin{bmatrix} a^{2} \\ a^{2} \end{bmatrix} a^{1/2} a^{1/2} = a^$$

œ

6

Continue <u>Bender's decomposition algorithm</u> for 125)	a
• Step 3: If for a sels] the dual recourse problem is unbounded.	(Th)
$Z_d(\mathcal{R}, \mathcal{E}) = +\infty \Rightarrow \mathcal{R}$ is an infensible solution Solver will give a direction of extreme ray \overline{r}	۲
such that $(T(x) \ge t h(x)) = 70$	۲
Add VS=VSUIF].	1
	1
If \mathbb{Z}_{d} $\{\hat{x}^{s}, \hat{z}^{s}\} = \hat{r}^{s}$ then let $\hat{\pi} \in \operatorname{orgsup} (T(\hat{x}) \hat{z}^{s} + h(\hat{x}))^{T} \pi$	9
let $\Pi \in \text{orgsup}(\Pi X) \subset \Pi \otimes Y$, $\pi \in \mathbb{R}^{J}$	9
$Q \Sigma^{S} + g \gg W^{T} \Pi$	۲
Add $U^s = U^s \cup [\widehat{\pi}]$	
Go to step 1.	
Assignment 3	3
3. 1) inf $\lambda t \in \operatorname{Rep} E_{R}[\max] (C-V)^T \lambda t [\overline{\operatorname{Re}}_{u_1}\max \{V_{N}\lambda_{N} - V_{N}\widehat{\varepsilon}_{N}, o\}] - \lambda, o \}$	9
$\sum_{n=1}^{\infty} S(t) = \frac{\pi}{2} \left(\frac{\pi}{2} + \frac{\pi}$	3
= inf $\lambda + \vec{\epsilon} (\alpha + \beta^T M + \langle \Gamma, \Lambda^7 \rangle)$ st. $\pi \in X, \alpha \in \mathbb{R}$, $\beta \in \mathbb{R}^N$, $\Gamma \in S_+^N$	
a+BIE+ETTE > (CV) + REWI MOX (VNXn-VNEn, O) ->, YEEK	
a+p ^T E+S ^T TE70, Y SERN => [[2] 70	0
(+=> x+ BTE+E [E > (C-V) x+ LT (V·x - V·E) -> . HLE 10,14"	
$V_{0X} = (C-V)^{T} \times + (U \cdot V)^{T} \times - (U \cdot V)^{T} \times - \lambda$	
$= \lfloor V, Y, V_{2}, V_{1}, V_{1}, V_{2}, V_{2$	
$\left[\frac{1}{2}(\beta+l\circ\nu)' \propto -(C-\nu)'\pi-(l\circ\nu)'\pi+\lambda\right]$	
+ E QE +Y S+SW	
Support of the problem is union ded, we can never	
En find a linear upperbound. Any line will exceeds	
the support.	
2) inf A+ & Sup Ep [MOX (C-V) TX+ [new STONS+1 Th S+S.] A=)] St. XERT AER, Q"EST, MER, STER HAELN]	
St. XEIK, $\lambda \in IK$, $Q \in D_{+}$, $I \in F$, S $\in IK$, $V \in U^{n}$	
$\sum_{x=1}^{T} Q^{n} E^{x} + \gamma^{n^{T}} E^{x} S^{n} \neq V_{n} X_{n} - \underbrace{V_{n} E_{n}}_{x \in [e_{n} \circ v]^{T} E}$	
$= \inf \{\lambda + \frac{1}{6} (\alpha + \beta^{T} M + \langle \Gamma, \Lambda \rangle) $ $= \inf \{\lambda + \frac{1}{6} (\alpha + \beta^{T} M + \langle \Gamma, \Lambda \rangle) $ $= \inf \{\lambda + \beta^{T} \xi + \xi^{T} T \xi = \langle (\zeta - V)^{T} x + \xi^{T} (\sum_{n \in (M)} Q^{n}) \xi + (\sum_{n \in (M)} \Gamma^{n})^{T} \xi + (\sum_{n \in (M)} S^{n}) \cdot \lambda $ $= \chi + \beta^{T} \xi + \xi^{T} T \xi = 2 \forall \xi \in \mathbb{R}^{M}$	
$st : {}^{*}d + \beta^{T} \xi + \xi^{T} T \xi = (C-V)' x + \xi \left(\sum_{n \in (V)} O^{n} \right) \xi + \left(\sum_{n \in (V)} I^{n} \right) \xi + \left(\sum_{$	
Q+P2+2 12 40, V204	

 $\begin{array}{c} (Y) & \in \\ \left[\begin{array}{c} \Gamma - n \overline{e} (Y) \right] Q^{n} \\ \frac{1}{2} \left(\beta - n \overline{e} (Y) \right] Q^{n} \\ \frac{1}{2} \left(\beta - n \overline{e} (Y) \right)^{n}$ * : Since E is demand, YEETAESDY, infa+BTE+ETTEZO 70 ASED dual Lecture 2°. Nov. 1 (2R) worse core recente function ΣĕĢ where $Z(X, \mathcal{E}) = \inf (Q\mathcal{E} + g)^T Y$ st. y eR" $T(x) \Sigma + h(x) \leq Wy$ and E= (SER* SESt) Summary 1) Piecewise - linear model (subset of 2-stage) - Sto chastic: discrete dist. with S scenarios => tractable O(s) - Sto chastic in general is NP-hard - DRO tractable under reasonable assumptions z) 2 - Stage mode - Stochastic discrete dist. with S scenarios => tractable O(s) - upper & lower bounds - Stochastic in general NP-hard Monte Carlo - DRO in general NP-hard - upper & lower bounds Lo robust opt. : support of dist. Why proving NP-hardness is useful: - better understanding of the complexity of the problem. - avoid future embarassment - want to solve a problem you perceive to be hard - develop approx. scheme, but didn't prove NP-hardness - some time later. - Someone proves problem NP-hard V - someone provides a polynomial time algorithm. x <u>Thm</u>: (2R) is NP-hard even if Q=0 & there is no first stage decision X. Strategy: @ Pick an NP-hard problem (0). @ Generate a polynomial - time reduction from any instance of 1Q) to an instance of (2R).

0

6

Proof. 0 o/1 INTEGER PROGRAMMING FEASIBLIT.
INSTANCE: Given S
$$\in \mathbb{R}^{M\times k}$$
 & t $\in \mathbb{R}^{M}$
QUESTION. Is there a binary vector $3 \in [0,1]^{k}$ such shatSSEt.
()
() Instance: $C = 0$. $Q = 0$. $g = 0 \in \mathbb{R}^{k}$
 $T = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \in \mathbb{R}^{3\times k}$, $h = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{2^{k+1}}$
 $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbb{R}^{3\times k}$ $\mathbb{C} = [t \in U^{1} \mathbb{R}^{k} : S \subseteq t]$
 $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbb{R}^{3\times k}$ $\mathbb{C} = [t \in U^{1} \mathbb{R}^{k} : S \subseteq t]$
 $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbb{R}^{4\times k}$ $\mathbb{C} = [t \in U^{1} \mathbb{R}^{k} : S \subseteq t]$
 $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbb{R}^{4\times k}$ $\mathbb{C} = [t \in U^{1} \mathbb{R}^{k} : S \subseteq t]$
 $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbb{R}^{4\times k}$ $\mathbb{C} = [t \in U^{1} \mathbb{R}^{k} : S \subseteq t]$
 $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbb{R}^{4\times k}$ $\mathbb{C} = [t \in U^{1} \mathbb{R}^{k} : S \subseteq t]$
 $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbb{R}^{4\times k}$ $\mathbb{C} = [t \in U^{1} \mathbb{R}^{k} : S \subseteq t]$
 $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbb{C}^{4\times k} : S \subseteq t]$
 $\mathbb{R}^{4\times k} : S \subseteq t = \mathbb{R}^{4\times k} : S \subseteq t] = \mathbb{R}^{4\times k} : \mathbb{R}^{4\times k} : S = t = 0$
 $\mathbb{R}^{4\times k} : S \subseteq t = [t \in U^{1} \mathbb{R}^{k} : S \subseteq t] = \mathbb{R}^{4\times k} : S \subseteq t] = [t = \mathbb{R}^{4\times k} : S = t] = [t = \mathbb{R}^{4\times k} : S = t] = 0$
 $\mathbb{R}^{4\times k} : S \subseteq t \subseteq t : S = t = [t = \mathbb{R}^{4\times k} : S \subseteq t] = [t = \mathbb{R}^{4\times k} : S \subseteq t] = [t = \mathbb{R}^{4\times k} : S \subseteq t] = [t = \mathbb{R}^{4\times k} : S = t] = 0$
 $\mathbb{R}^{4\times k} : S = t = 0$ io $\mathbb{R}^{4\times k} : S = t = 0$ is $t = 0$.
 $\mathbb{R}^{4\times k} : S = t = 0$ is $t = 0$.
 $\mathbb{R}^{4\times k} : S = t = 0$ is $t = 0$.
 $\mathbb{R}^{4\times k} : S = 0$ is $t = 0$.
 $\mathbb{R}^{4\times k} : S = 0$ is $\mathbb{R}^{4\times k} : S = 0$
 $\mathbb{R}^{4\times k} : S = 0$ is $\mathbb{R}^{4\times k} : S = 0$
 $\mathbb{R}^{4\times k} : S = 0$ is $\mathbb{R}^{4\times k} : S = 0$
 $\mathbb{R}^{4\times k} : S = 0$ is $\mathbb{R}^{4\times k} : S = 0$
 $\mathbb{R}^{4\times k} : S = 0$ is $\mathbb{R}^{4\times k} : S = 0$
 \mathbb{R}

.

$$= \inf_{x \in X} C^{T} x + 1$$

$$\sup_{x \in X} x, x \in X, x \in R, y \in R^{N_{x}}, y \in E[L]$$

$$g^{T}y^{T} x = y \in W = y = W^{T} T$$

$$t = (T \in R^{T}, g = W^{T} T)$$

$$= (T \in R^{T}, g = W^{T} T)$$

$$= (T \in R^{T}, g = W^{T} T)$$

$$T = (T \in R^{T}, g = W^{T} T)$$

$$T = (T \in R^{T}, g = W^{T} T)$$

$$T = (T \in R^{T}, g = W^{T} T)$$

$$T = (T \in R^{T}, g = W^{T} T)$$

$$T = (T \in R^{T}, g = W^{T} T)$$

$$T = (T \in R^{T}, g = W^{T} T)$$

$$T = (T \in R^{T}, g = W^{T} T)$$

$$T = (T \in R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R^{T}, g = W^{T} T)$$

$$T = (T = R$$

•

Lecture 21 Nov.3. $\begin{array}{ll} \inf & C^T X + S h \beta \ \mathcal{Z}(X, \mathcal{E}) \\ X \in X & S \in \mathbb{C} \end{array}$ (28) where Z(x, E) = inf gry 樹 s.t. y G RN2 TWE + hux) & Wy = $Z_{d}(x, \varepsilon) = \sup (T(x)\varepsilon + h(x))^T \pi$ S.t. TER+ $9 = W^T \pi$ in f C⁷X+ V XEX s.t. Sup Z(X.E) S1 1ER ٤eß Bender's Decomposition Algorithm - assume complete recourse Z(X, Σ) < + D0 , ∀× EX , ∀Σ € 🛛 can be extended to the case where Z(x. 8)=+00 for som x & 2 - can be extended to other DRD models. W) -Algorithm : Input: Parameter of (2R) Dutput: Optimal solution X to (2R) · Step 0: Let U= \$ (current set of extreme points of E) · Step 1: Solve the master problem inf CX+2 substitute recourse function with its definition s.t. XEX, 1ER $\exists y^{r} \in \mathbb{R}^{N_{2}}$. (-) ZIX, E) St, HEGU $g^7 y^{\epsilon} \leq t$ 1 VEEU Tix) Ething = Wys 0 Give us optimal solution (2,2) Solve sup $Z(\hat{x}, \varepsilon)$ • Step 2 . 0 Σe它 hard to perform $\sup_{\xi \in \Omega} \mathbb{E}[\hat{x}, \xi] \leq \hat{i}$, terminate. The solution $\pi^{k} = \hat{\pi}$ is optimal to (2R). If. ۲ Otherwise, go to step 3: · Step 3: Let 2 = argsup ZLZ, E). Add U=UU(2). Go to step 1. MCONVAX in E 🖸 🧕 3 3

Step 2 is hard but admits a MILP reformulation. in- gty Nz Sup SEE St. YER TAE this) & Wy (KKT) - For any EEE from Karush - Kuhn - Tucker conditions: y is optimal => T(x) S+ h(x) S Wy $\exists \pi \in \mathbb{R}^{\exists}_{+}$ $g = W^{\tau} \pi$ DEWY-TIR)E-hiR) T ej = j+ j+ row Reformulate 1) as MILP; Introduce a binary vector. 32610.1]¹. $e_j^T (Wy - T\hat{x}) \varepsilon - h(x_1) \varepsilon M z_j \qquad y_j \varepsilon []$ $\pi_j \varepsilon M(1 - Z_j)$ 1.12 1.12 1.1 Where M is a large constant. $\sup_{\Sigma \in \Sigma} Z_{\underline{1}}(\widehat{X}, \Sigma) = \sup_{\Sigma \in \Sigma} g^{T} y$ sup g'y s.t. sept, yer", Ter, zeto,1)] Tus) Sthus S Wy $g = W^T \pi$ ejt (Wy - TKIE - hus) 5 Mzj Vjel] $\pi_j \leq M(1-\overline{z}_j)$ $C^{T}x + \sup_{\xi \in \Omega} \mathcal{L}(x, \xi)$ (212) where $Z(x,s) = \inf Qst g$ s.t. ye k^N $T(x) \in +h(x) \leq W_{y}$ $= Z_{d(\pi, 2)} = \sup (T(x) z + h(x))^T \pi$ st. TER+ $Q \Sigma + 9 = W^T T L$ General Problem (Q=0, & W.L.O.g. assume E = R+ MP hard Gurding inf CTX + 2 +) -> copositivo program st. xeX, zeR $\sup (T(x) \xi + h(x))^T \pi$ SUD εl SA TERT Seg. QE+9 = WTR

•

6

9

positive Semidefinite cone :
$$\mathbb{S}_{+}^{+}$$

 $M \in \mathbb{S}^{k} \iff M \otimes_{1}^{0} \otimes \mathbb{S}^{T}_{M} \mathbb{Z} = 0$. $V \in \mathbb{R}^{k}$
 $M \in \mathbb{S}^{k} \iff M \otimes_{1}^{0} \mathbb{O} \otimes \mathbb{S}^{T}_{M} \mathbb{Z} = 0$. $V \in \mathbb{R}^{k}$
 $M \in \mathbb{C} \iff M \otimes_{1}^{k} \mathbb{O} \otimes \mathbb{S}^{T}_{M} \mathbb{Z} = 0$. $V \in \mathbb{R}^{k}$
 $\mathbb{S}_{+}^{+} \subseteq \mathbb{C}$
 \mathbb{G} then $M \in \mathbb{S}^{k}$, checking $M \in \mathbb{S}_{+}^{k}$ is easy
 \mathbb{G} one $M \in \mathbb{S}^{k}$, checking $M \in \mathbb{S}_{+}^{k}$ is easy
 \mathbb{G} one $M \in \mathbb{S}^{k}$, checking $M \in \mathbb{S}_{+}^{k}$ is easy
 \mathbb{G} one $M \in \mathbb{S}^{k}$, checking $M \in \mathbb{C}$ is N^{p} -hord.
 \mathbb{T} contails inner opproximation
 \mathbb{T} for $\mathbb{P}^{p} \mathbb{N}$, where $\mathbb{P}_{[0]}$, $\mathbb{N} \geq 0$
 \mathbb{T} if $M = \mathbb{P} + \mathbb{N}$, where $\mathbb{P}_{[0]}$, $\mathbb{N} \geq 0$
 $\mathbb{T}^{0} = 1 \mathbb{M} \oplus \mathbb{S}^{k}$: $M = \mathbb{P} + \mathbb{N}$
 $\mathbb{C}^{0} \subseteq \mathbb{C}^{k} \subseteq \mathbb{C}^{k} \cdots \subseteq \mathbb{C}$
 \mathbb{C} $\mathbb{C}^{k} \subseteq \mathbb{C}^{k} = \mathbb{C}^{k} \mathbb{N} = \mathbb{C}^{k} \mathbb{N} = \mathbb{C}^{k} \mathbb{N} = \mathbb{C}^{k} = \mathbb{C}^{k} \mathbb{C}^{k}$
 \mathbb{C} $\mathbb{C}^{k} \subseteq \mathbb{C}^{k} \oplus \mathbb{C}^{k} = \mathbb{C}^{k} = \mathbb{C}^{k} \mathbb{Z} = \mathbb{C}^{k} \mathbb{C}^{k}$
 \mathbb{C} $\mathbb{C}^{k} \subseteq \mathbb{C}^{k} \oplus \mathbb{C}^{k} = \mathbb{C}^$

$$\begin{aligned} & \operatorname{Define}_{i} : \overline{\alpha} = \begin{bmatrix} 0 \\ s \end{bmatrix}_{i} \cdot \overline{g} = \begin{bmatrix} 1 \\ -s \end{bmatrix}_{i} \cdot \overline{W} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{i} \cdot$$

(F)

Lecture 23	
Wasserstein ambiguity set	
Use the data directly to construct the ambiguity set given ε ',, ε ^s independent samples from the true dist. P	0
Empirical dist. $P_s = \frac{1}{S} \sum_{s \in [S]} \delta_{\varepsilon^s}$	
Wasserstein ball: $B_{E}(\hat{P}_{s}) = P \in P_{\bullet}(E) : W(P, \hat{P}_{s}) \in [$	
	9
e $Prob(R \in Be(Rs)) \ge 1 - P$	۲
Res Ar And Location of the ball changes according to the tamples	6
$H_{S} = P \times \cdots \times P$	۲
Ris Stimes	
He $E = g(P)$ for any P , we can always find E which continues.	
It's herd to derive the will focus more on how to derive to anterior way the	0
Combrighty set.	
If $P \in B_{\varepsilon}(\hat{P}_{s})$: $\mathbb{E}_{P}[f_{\sigma}(\pi, \tilde{z})] \leq \sup_{R \in B_{\varepsilon}(\hat{P}_{s})} \mathbb{E}_{P}[f_{\sigma}(\pi, \tilde{z})] \forall \pi$	
$ \begin{array}{c} \inf_{x \in X} \sup_{P \in B_{6}(\widehat{R_{5}})} \mathbb{E}_{R} \left[\left\{ \begin{array}{c} P_{0}(x, \widehat{z}) \right\} = \widehat{J}_{s} certificate \end{array} \right. \end{array} $	۲
$H \ P \in B_{\epsilon}(\hat{P}_{s})$: $E_{p}[\hat{f}_{0}(\hat{\mathcal{X}},\tilde{\epsilon})] \leq \hat{J}_{s}$	0
Prob $(E_{\mathbb{P}}[f_{\circ}(\hat{x}_{s}, \hat{z})] \leq \hat{J}_{s}) \gg 1 - \rho$	۲
$W = (P, P') = \inf \int_{\Theta \times \Theta} z - \chi TT (dz, d\chi)$	
$W = (P, P') = \inf \int_{\Box \times \Box} \Sigma - K TT (d\Sigma, dX)$ s.t. TT is a joint distribution of $\Sigma d \tilde{X}$ with marginal dist.	
s.t. TT is a joint distribution of $\tilde{z} \& \tilde{\chi}$ with marginal dist. R & R'. respectively. $\tilde{z} \not \downarrow$ χ	
sit. IT is a joint distribution of Ed. I with marginal dist.	
s.t. TT is a joint distribution of $\tilde{z} \& \tilde{\chi}$ with marginal dist. R & R'. respectively. $\tilde{z} \not \downarrow$ χ	
s.t. TT is a joint distribution of $\tilde{z} \& \tilde{\chi}$ with marginal dist. R & R'. respectively. $\tilde{z} \not \downarrow$ χ	
s.t. TT is a joint distribution of $\tilde{z} \in \tilde{X}$ with marginal dist. $\mathbb{R} \cong \mathbb{P}'$. respectively. $\tilde{z} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ $	
s.t. TT is a joint distribution of $\tilde{\Sigma} \& \tilde{X}$ with marginal dist. R & R'. respectively. $\tilde{J} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ $	
s.t. IT is a joint distribution of $\tilde{z} \in \tilde{X}$ with marginal dist. $R \approx P'$. respectively. $\tilde{z} = \frac{1}{3}$ $\tilde{z} = \frac{1}{3}$ Assume χ and \tilde{z} here the same discrete elist. $\tilde{z} = \frac{1}{3}$ Assume χ has discrete shift.	

fit x: Sup
$$\mathbb{E}_{\mathbf{F}}[f_{0}(\mathbf{x}, t_{0})]$$
 (4)

$$= \sup_{\mathbf{R}, \mathbf{F}} \mathbb{E}_{\mathbf{R}}[f_{0}(\mathbf{x}, t_{0})]$$

$$= t_{\mathbf{R}}[f_{\mathbf{R}}(\mathbf{x}, t_{0})]$$

$$= t_{\mathbf{R}}[f_{\mathbf{R}}(\mathbf{x},$$

Ø

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} H & \lambda = 0 \\ H & \lambda = 0 \end{array} & \begin{array}{c} norm is positive homogeneous \\ f & \lambda > 0 \end{array} & \lambda \||c|| = \||\lambda c|| = \sup c^{-1}(\lambda z) \\ & s.t. & \||z\||_{\phi} \leq 1 \\ & let \ z' = \lambda z \end{array} & \begin{array}{c} s.t. & \||z\||_{\phi} \leq 1 \\ & let \ z' = \lambda z \end{array} & \begin{array}{c} s.t. & \||z\||_{\phi} \leq 1 \\ & let \ z' = \lambda z \end{array} & \begin{array}{c} s.t. & \||z\||_{\phi} \leq \lambda \\ & s.t. & \||z\||_{\phi} \leq \lambda \end{array} \\ & \left(\mu \Rightarrow \sum_{i,i \in t}^{norm} Q_{1}(n^{i} z + b_{i}(n) - g_{i}n - g_{i}^{-1} (z - z^{i}) \leq \alpha_{s} \end{array} \\ & \left(\mu \Rightarrow \sum_{i,i \in t}^{norm} Q_{1}(n^{i} z + b_{i}(n) - g_{i}^{-1} (z - z^{i}) \leq \alpha_{s} \end{array} \\ & \left(\mu \Rightarrow \sum_{i,i \in t}^{norm} Q_{1}(n^{i} z + b_{i}(n) - g_{i}^{-1} (z - z^{i}) \leq \alpha_{s} \end{array} \\ & \left(\mu \Rightarrow \sum_{i,i \in t}^{norm} Q_{i}(n^{i} z + b_{i}(n) - g_{i}^{-1} (z - z^{i}) \leq \alpha_{s} \end{array} \right) \\ & \left(\mu \Rightarrow 2 \sum_{i,i \in t}^{norm} Q_{i}(n^{i} z + b_{i}(n) - g_{i}^{-1} (z - z^{i}) \leq \alpha_{s} \end{array} \\ & \left(\mu \Rightarrow 1 \| \partial p_{i} \|_{s} \leq \lambda \right) \quad \left(\sum_{i,i \in t}^{norm} Q_{i}(n^{i} z + b_{i}(n) + g_{i}^{-1} z \leq z^{i} \leq \alpha_{s} \end{array} \right) \\ & \left(\mu \Rightarrow 1 \| \partial p_{i} \|_{s} \leq \lambda \right) \quad \left(\sum_{i,i \in t}^{norm} Q_{i}(n) + g_{i}^{-1} z \leq z^{i} \leq \alpha_{s} \end{array} \\ & \left(\mu \Rightarrow 1 \| \partial p_{i} \|_{s} \leq \lambda \right) \quad \left(\sum_{i,i \in t}^{norm} Q_{i}(n) + g_{i}^{-1} z \leq z^{i} \leq \alpha_{s} \end{array} \right) \\ & \left(\mu \Rightarrow 1 \| \partial p_{i} \|_{s} \leq \lambda \right) \quad \left(\sum_{i,i \in t}^{norm} Q_{i}(n) + g_{i}^{-1} z \leq z^{i} \leq \alpha_{s} \end{array} \right) \\ & \left(\mu \Rightarrow 1 \|_{s} = \lambda \right) \quad \left(\sum_{i,i \in t}^{norm} Q_{i}(n) + g_{i}^{-1} z \leq z^{i} \leq \alpha_{s} \end{array} \right) \\ & \left(\mu \Rightarrow 1 \| \partial p_{i} \|_{s} \leq \lambda \right) \quad \left(\sum_{i,i \in t}^{norm} Q_{i}(n) + g_{i}^{-1} z \leq z^{i} \leq \alpha_{s} \end{array} \right) \\ & \left(\mu \Rightarrow 1 \| \partial p_{i} \|_{s} \leq \lambda \right) \quad \left(\sum_{i,i \in t}^{norm} Q_{i}(n) + g_{i}^{-1} z = \alpha_{s} \end{array} \right) \\ & \left(\mu \Rightarrow 1 \|_{s} = \lambda \right) \quad \left(\sum_{i,i \in t}^{norm} Q_{i}(n) + g_{i}^{-1} z = \alpha_{s} \end{array} \right) \\ & \left(\mu \Rightarrow 1 \| \partial p_{i} \|_{s} = \lambda \right) \quad \left(\sum_{i,i \in t}^{norm} Q_{i}(n) + g_{i}^{-1} z = \alpha_{s} \end{array} \right) \\ & \left(\mu \Rightarrow 1 \| \partial p_{i} \| p_{i} \|_{s} \| p_{i} \| p_{i} \| p_{i} \|_{s} \| p_{i} \|_{s} \| p_{i} \|_{s} \| p_{i} \|$$

$ \psi \Rightarrow S \frac{\chi_{is}}{P_{is}} \leq t \Rightarrow \frac{\chi_{is}}{P_{is}} \in E = f \leq eR^{k}$. SEEt	
$\sum_{s \in [s]} \sum_{i \in [s]} \frac{P_{is}}{s} = \sum_{s \in [s]} \sum_{s \in [s]} P_{is}^{s} = \sum_{s \in [s]} \sum_{s \in [s]} 1 = 1$ we indeed have a probability.	
sels] jelj z z zel jeli i z z zel jeli z z zel jeli z z zel z ze	0.000
$\sum_{s \in ts} \frac{z}{jet_{31}} \frac{P_{1s}}{s} \ \frac{x_{1s}}{p_{1s}} - z^{s} \ = \frac{1}{s} \sum_{s \in ts} \frac{z}{jet_{31}} \ x_{1s} - P_{1s} \sum_{s} \frac{z^{s}}{s} \ s \in t_{s}$	
$\sum_{s \in [s]} \sum_{s \in [s]} \frac{P_{is}}{s} \left(\max_{t \in [s]} \frac{P_{is}}{p_{is}} + b_{is} \frac{t_{is}}{p_{is}} + b_{is} \frac{t_{is}}{p_{is}} \right) = under the dist. In equisit constructed \mathbb{P}^{(s)}the obj \geq then actival.$	-
Z Z Z Pas (Quant Stis huma)	
$\frac{Z}{sets} = \frac{Z}{jetal} + \frac{P_{3}s}{s} \left(\begin{array}{c} a_{j}(n)^{T} \\ P_{js} \end{array} + \begin{array}{c} b_{j}(n) \end{array} \right)$	
$= \int_{S} \sum_{s \in UJ} \sum_{j \in (J)} \left(Q_{j(N)} \mathcal{T} \mathcal{X}_{js}^{*} + b_{j}(N) \right) = \sum_{P \in \mathcal{P}_{\mathcal{E}}} \sum_{(P_{s})} \mathbb{E}_{P} \left[\sum_{j \in (J)} Q_{j(N)} \mathcal{T}_{s}^{*} + b_{j(N)} \right]$	
Slides: "Optimizer's Curse"	
SAA. somple overage opproximation	
	1
	-
na antes allerationes and a large state - state to the state of a large transmission of the large state of the	9
ਤ ਨੇ ਤੁਣ ਸ਼ਿੰਦ ਤੁਣਤਰਨ ਦੇ ਪੱਤਰ ਹੋ ਰਹੇ ਹੈ ਕਿ ਤੁਣਤੇ ਨੇ ਕਿਹਾ ਨੇ ਇੱਕ	
· · · · · · · · · · · · · · · · · · ·	-
	3
	J
and a company of statistic of the second second statistic of the second statistic of the second second second s	-
tilling in any strand to the the state of the state of the state states and the state of the sta	-
a contract and a contract of the second second of a second second model and the second second second second sec	
 A second s	
in and the second second second second the second s	
(a) and (a) and (b) and (c)	
	-
	123

$$\begin{array}{c} \label{eq:second} \left\| \begin{array}{c} \psi \right\|_{\lambda = 0} & \psi \\ \text{if } \lambda > 0 \\ \text{if } \lambda > 0 \\ \lambda = 0 \\ \lambda =$$

Ð

$(v) \Rightarrow S \frac{\chi_{is}^*}{P_{is}^*} \le t \Rightarrow \frac{\chi_{is}}{P_{is}} \in \Xi \Rightarrow j \le eR^k \cdot S \le t $	9
	9
$\sum_{s \in [s]} \sum_{j \in [s]} \frac{P_{is}}{s} = \frac{1}{s} \sum_{s \in [s]} \sum_{t \in [s]} P_{is}^{s} = \frac{1}{s} \sum_{s \in [s]} 1 = 1$ we indeed how a probability.	0
$\sum_{s \in [s]} \sum_{j \in [j]} \frac{P_{is}}{s} \parallel \frac{X_{is}}{P_{is}} - \Sigma^{s} \parallel = \frac{1}{s} \sum_{s \in [s]} \sum_{j \in [a]} \parallel X_{is} - P_{is} \Sigma^{s} \parallel s \in$	9
$\Sigma = P_{is}^{*}$ (max $A_{i}(\pi)^{T} \chi_{is}^{*}$, $h_{i}(\pi)$) ~ index the dist he next constructed P^{*}	٩
$\sum_{s \in \{s\}} \sum_{j \in \{s\}} \frac{P_{js}}{s} \left(\max_{l \in \{i\}} \frac{P_{l}}{s} + b_{l} \sum_{j \in \{s\}} \frac{P_{ls}}{s} $	-
	9
$= \int_{S} \sum_{s \in D_{3}} \sum_{j \in [J]} \left(Q_{j}(x)^{T} \chi_{js}^{s} + b_{j}(x) \right) = \sup_{P \in B_{\varepsilon}(Q_{s})} \mathbb{E}_{P} \left[\int_{J \in T J_{3}} Q_{j}(x)^{T} \tilde{\varepsilon} + b_{j}(x) \right]$	1
energia de la compansión d	
Slides: Optimizer's Curse " SAA. sample overage approximation	
	3
Lecture 25. Nov. 22	
Multi-stage stochastic programs	9
$e_{X} = \{x_{2} : T_{2}(X_{1}) \ge_{2} + h_{2}(X_{1}) \le W_{2}X_{2}\}$ $\boxed{X_{1}} \longrightarrow \ge_{2} \longrightarrow [X_{3}] \longrightarrow [X_{3}] \longrightarrow [X_{3}] \longrightarrow [X_{3}] \longrightarrow [X_{3}]$	1
$\epsilon_{1x_{3}}, T_{3}(x_{2}) \leq \omega_{3}x_{3}$	
Accurse So So and decrete rouder writebler	
Assume $\Sigma_2,, \Sigma_T$ are discrete random variables. & they are stagewise independent. Est $T_T (X_{T-1}) \widetilde{\Sigma_T} + h_T V$	XI)
$\mathbb{E}_{\mathcal{F}} = \mathbb{E}_{\mathcal{F}} = $	
$\inf_{x_1} C'_{x_1} + \underbrace{\mathbb{E}}_{\Sigma_{\underline{z}}} \begin{bmatrix} \inf_{x_2} C_{\underline{z}} x_{\underline{z}} + \underbrace{-\varepsilon_{\underline{z}}}_{\underline{z}} L & s.t. & \cdots \\ s.t. & T_{\underline{z}}(x_1) \widetilde{\underline{z}}_{\underline{z}} + h_{\underline{z}}(x_1) \equiv W_{\underline{z}} X_{\underline{z}} \end{bmatrix}$	
s.t. $x_i \in X$	
How to solve:	56
- Scenario tree approximation $\sum_{z_1}^{z_2} \cdots \sum_{z_r}^{z_r} \Rightarrow B_{i_r} LP O(S^{T}) expansion$	6656
number of realiza	v _{in} es M
- decision rules approximation => +ractable but cannot solve the problem exactly	Ð
- dynamic programming => Stochastic clual dynamic programming ! (Perreira & Pinto 1991) (general intractable) (SDDP)	
(general intractable) (SDDP)	
$\label{eq:constraint} = 1 \qquad \qquad$	

Ø

	۲
Algorithm	
Input: A candidate solution $\hat{X} \in X$ & tolerance \in	
Dutput: E = Optimal solution XI EX	()
• Step 1: Let $Q_{2}(\cdot) = 0$ • Step 2: Solve for all $s \in [S]$	٢
$\pi^{S} \in \operatorname{argsup} (\operatorname{T}_{2}(\hat{x_{1}}) \times \sum_{j=1}^{S} + h_{2}(\hat{x_{1}})^{T} \pi$	
s.t	-
$C_{3} = W_{3}^{T} \pi$ $Update \hat{Q}_{2}() = ma \times \left[\hat{Q}_{2}(), \frac{1}{5} \sum_{s \in \mathcal{O}_{3}} \left(\frac{T_{2}(\cdot) \sum_{s}^{S} + h_{s}(\cdot)}{\pi^{S}} \right) \right]$	-
Optiate (12) = max (02), s sets (12) (22 + ns) (12) (22 + ns) (12) (22) (22) (22) (22) (22) (22) (22	0
2	۲
	~
2' 32 20 21' Firradd 2' Second add 71 true 2 since. Q1) is lower bound	IJ
• Step 3: Solve $\overline{Z} = \frac{inf}{xex} C_i T x_i + Q_L x_i$)	0
update $\hat{x}_i \in \text{arginf}_{x_i \in X} C^T x_i + \hat{\sigma}_i(x_i) = \mathbb{Z} \setminus \frac{\hat{x}_i}{\hat{x}_i}$	1
• Step 4: we know that \hat{X} is a suboptimal solution	
evaluate $\overline{z} = C_i \hat{x}_i + Q_2(\hat{x}_i) \in \text{the orthol} ibj$	3
$f: \overline{z} - \overline{z} \le G$, $\chi_i^{\#} = \widehat{\chi}_i$ terminate	0
else. go to Step 2	
SDDP for multistage problems points (not solution, solution should be a familition in 2)	0
Input: condidate solutions $\hat{x}_1, \dots, \hat{x}_{T-1}$ & tolerance \in	
Output: E - optimal solution x, e X	0
• Step 1. Set $Q_t(\cdot) = 0$, for $t=2, \dots, T$	۲
• Step 2: $t=T$ solve $\forall s \in [S]$ Backward step \uparrow $Tc^{S} \in arg sup (T_{T} (\hat{X}_{T-1}) \Sigma_{T}^{S} + h_{T} (\hat{X}_{T-1}))^{T} T$	
р+ <i>Д</i> ≫9	<i>.</i> @
$C_{T} = W_{T}^{T} \pi$ $Update : \hat{Q}_{T}(\cdot) = max \left\{ \hat{Q}_{T}(\cdot), \frac{1}{5} \sup_{s \in CS} \left(\overline{T_{T}}(\cdot) \sum_{T}^{S} + h_{T}(\cdot) \right)^{T} \pi_{s}^{S} \right\}$	G
Update: $\hat{Q}_{T}(\cdot) = \max \left[\hat{Q}_{T}(\cdot), \frac{1}{5} \operatorname{sets}(T_{T}(\cdot) \times T + h_{T}(\cdot)) T_{\tau}^{*} \right]$	
t=T-1. solve clual of	
$t = T - 1 \text{solve dual of} \\ V_{T-1} (X_{T-2}, S_T) = \inf C_{T-1} X_{T-1} + Q_T (X_{T-1})$	
S.t. TTI (XT-2) ETI + hT-1 (XT-2) S WT-1 XT-1	
But we don't have access to QT(XT-1) so we colve approximation	
$\inf C_{T-1}^T X_{T-1} + \hat{Q}_T (X_{T-1})$	
S.t. $T_{T-1}(X_{T-2}) \sum_{T-1}^{s} h_{T-1}(X_{T-2}) \leq W_{T-1} \times T_{T-1}$ update: $\widehat{O}_{T+1}(\cdot) = ma \times \{ \widehat{O}_{T-1}(\cdot), \frac{1}{5} \sum_{s+t \leq j} T_{T-1}(\cdot) \geq T_{-1} + h_{T+1}(\cdot) \}$	
nepeat until T=2	
	155

(†) (†)

6

٢ ٩ **B** R. 0 0 ST.

```
Lecture 26. Nov 29

    Step 3 : Solve :

 0
                                                                                                              \frac{z}{z} = \inf_{x \in Y} C_i^T \lambda_i + (\hat{Q}_z(\lambda_i))
update \pi_{i} \in \arg \inf_{x \in X} C_{i}^{T} \pi_{i} + \widehat{Q}_{i}(\pi_{i})
                                              · Step 4: Monte - Carlo
                                                                                               Pick a realization 1: \hat{\epsilon}_2, \hat{\epsilon}_T from R_{2x} = R_T
                                      Forward step T
                                                                                                 Set \hat{\pi}_i^{t} = \hat{\pi}_i
                                                                                                 solve for t=2,..., T
                                                                                                                       \hat{x}_{t} \in \text{arg inf} \quad c_{t}^{T} \pi_{t} + \hat{\alpha}_{t+1} (x_{t})
s.t. \quad T_{t} (\hat{x}_{t-1}^{L}) \hat{\xi}_{t}^{L} + h_{t} (\hat{x}_{t-1}^{L}) \leq W_{t} x_{t}
\hat{x}_{2}^{L} = \hat{x}_{T} \sum_{t} f_{t} = f_{t} + f_{
                                                                                                 \hat{x}_{1}^{\dagger}, \hat{x}_{2}^{\dagger},
                                                                                                                                                                       Cirit + E Cirit Cost for redization 1.
                                                                                                   \overline{z} = \overline{c} \cdot \widehat{x}_{1} + E \left[ \underbrace{\Sigma}_{i} C_{i} \cdot \widehat{x}_{i} \right]\approx c_{i} \cdot \widehat{x}_{i} + \frac{1}{L} \underbrace{\Sigma}_{i} C_{i} \cdot \widehat{x}_{i}
                                                                                                                7 mit (i'x, + Q2(7,) the objective.
                                                                                                                 アモ
                                                                                                   11 2- 2 <6
                                                                                                                    \pi_1^* = \hat{\pi_1}, terminate.
                                                                                                      else go to step 2.
                                       server A. i
                                   Review.
                                                    inf Jown
                                                        st. fila) ≤0, Vie[1]
                                            Different
                                                                                            paradigms .
                                              - stodiastic
                                              — robust 🗄
                                              - distributionally robust.
                                                                                                                                                 - continuous
                                               Stochastic: 2~P
                                                                                                                                                 > discrete.
                                               Decision maker can be :
                                                    - risk neutral, E[·]
                                                    - risk averse : CVaRe []
                                                                                                                                                  VaRe [·]
    0
```

use CLT to derive some confidence interval on Ξ

inf (1x, E)

٤

tîtr,

1-e for (x. 2)

st Silt. E) So . Viell]

÷

rick averse chance constraint, Plf: (x.E) =0, Vie[1]) >+ E 6 ⟨=> VaRe [Max fitz 3)] ≤ 0 Distribution robust model: Contraction of the second P is ambiguous REP-PM, USE, USMAD , Wasserstein. (unimodality? symmetry?) folms) is convex in a for any SEE. - One - stage: -· Stochastic: P is discrete - tractable R is continuous - intractable • dist. robust: tractability → (Streaming / online opt. E', ... E', Selp. O(K×S) → O(K) sproklag) · chance constraint. P discrete - intractable. dist. robust - inf (8(x.E)=0) 7 - E NEP (+ Constraint sampling approach inf c'x st. A (f 17. 2) so) 71-6 inf CTA [s.t. {[x, ε^s] ε0, ∀se[S] . Solve this for each sample and solution is \hat{X}^s 0 To see how many S satisfies: Prob (R (f (xs, 2) so) > + E) > + Ê 6) S ッ き (lnち+N) 0 - Two- stage: $fo(x, \varepsilon) = C^{T}x + \inf \left[Q\varepsilon + g\right]^{T} y$ s.t. yer" T120 € + h120 ≤ Wy R is discrete - Tractable æ P is continuous - intractable. - approx. schemes with guatantees. . dist. robust - intractable. -X is discrete V systematically partion the y is discrete. Ye IR" NZ" set and iterate to get updated feasible solution \hat{y}_n Decision rules: - linear 8 - quadratic. (- polynomial, piecewise linear) 0


```
- Multi-stage:

IP discrete - intractoble.

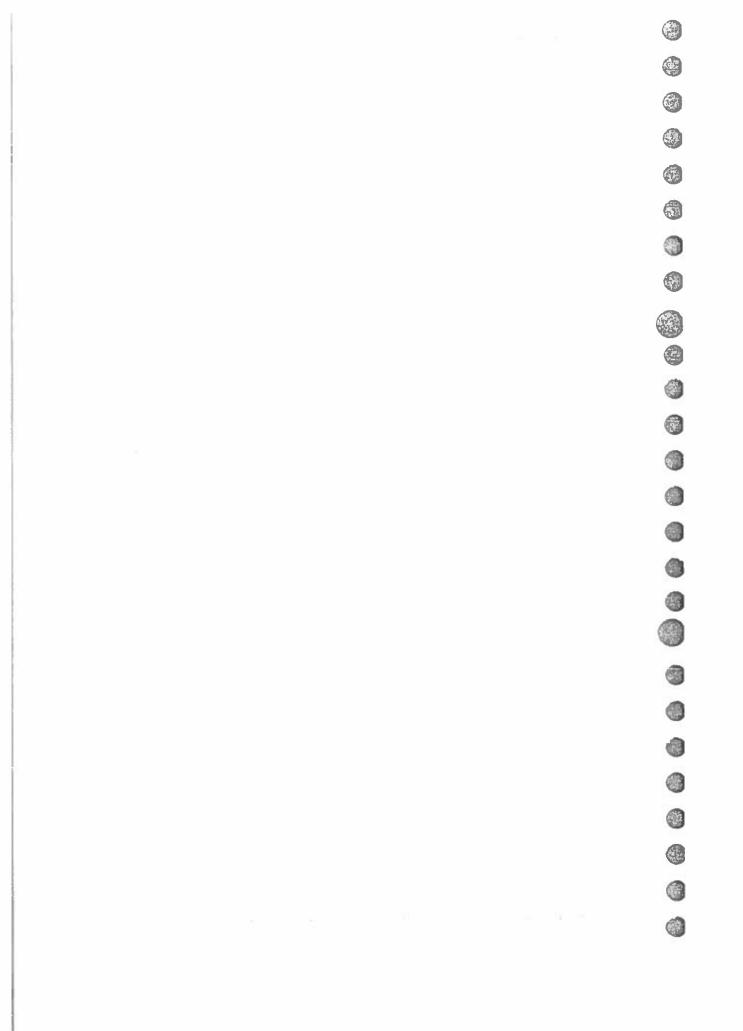
- SDDP

(- scenario tree X

- decision rules)
```

```
* (continue). chance constraint:

inf IP (. f, (x, z) =0. Ure[I]) 7 1-6


PEP

In general, intractable.
```

```
Sometimes tractable P is M& MAD
```

Exam

- Wed Dec. 14. 2-5 P.M
- locotion : SZB = 278.
- Open book.

