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Chapter 1

Background Material

In this chapter, we review some of the relevant concepts that will be used throughout the course.

Notation: We denote the set of extended real numbers as R = R ∪ {−∞,+∞}. We use lower-case bold

face letters to denote vectors and upper-case bold face letters to denote matrices. For any I ∈ N, we define

[I] as the index set {1, . . . , I}. We denote by I the identity matrix and by e the vector of all ones. Their

dimensions will be clear from the context. All random variables are designated by tilde signs (e.g., ξ̃), while

their realizations are denoted without tildes (e.g., ξ). The characteristic function of a set S is defined as

χS(ξ) = 0 if ξ ∈ S; = ∞ otherwise.

1.1 Convex Optimization

A large class of decision making problems can be formulated as a formal mathematical optimization model

of the form

minimize f0(x)

subject to x ∈ RN

fi(x) ≤ 0 ∀i ∈ [I].

(P)

Here f0 : RN → R is the objective function (cost, negative profit, etc.) that we seek to minimize, and

fi : RN → R, i ∈ [I], are constraint functions (budget, capacity, etc.) that define the feasible region of the

decision variable x. Note the constraint system in (P) is equivalent to a single constraint given by

max
i∈[I]

fi(x) ≤ 0.

We will find this representation useful when we delve further into optimization under uncertainty.

2



Definition 1 (Domain). The domain of a function f is defined as

dom(f) =
{
x ∈ RN : f(x) < +∞

}
.

For a cleaner presentation, we henceforth encapsulate all constraint functions into the set X ⊆ RN defined

as

X =
{
x ∈ RN : fi(x) ≤ 0 ∀i ∈ [I]

}
.

Definition 2 (Infimum). The infimum of a minimization problem (P) is the largest number z⋆ such that

f0(x) ≥ z⋆ ∀x ∈ X . We denote the infimum of (P) as inf (P) ∈ R.

Definition 3 (Global Minima). A point x⋆ ∈ X is called a global minima for (P) if f0(x) ≥ f0(x⋆) ∀x ∈ X .

We further call f0(x⋆) a global minimum of (P).

Definition 4 (Local Minima). A point x⋆ ∈ X is called a local minima for (P) if there exists δ > 0 such

that f0(x) ≥ f0(x⋆) ∀x ∈ X with ∥x− x⋆∥ ≤ δ. We further call f0(x⋆) a local minimum of (P).

Definition 5 (Feasibility). The problem (P) is called feasible if X ≠ ∅, in which case inf (P) < +∞.

Otherwise, it is called infeasible and inf (P) = +∞.

Definition 6 (Unbounded Problem). The problem (P) is called unbounded if inf (P) = −∞.

In this course, we mostly concern ourselves with convex optimization, in which the functions f0 and

fi, i ∈ [I], have convex domains and satisfy the convexity property

fi(λx+ (1− λ)y) ≤ λfi(x) + (1− λ)fi(y) ∀λ ∈ [0, 1], ∀x,y ∈ dom(fi),

for all i ∈ {0} ∪ [I].

Definition 7 (Proper Convex Function). A convex function f is called proper if dom(f) is non-empty and

f(x) > −∞ for every x ∈ RN .

Operations that preserve convexity are:

1. Composition with affine functions: If f is convex then f(Ax+ b) is also convex.

2. Non-negative weighted sum: if f1, . . . , fK are convex functions and w1, . . . , wK are non-negative

numbers, then the combination w1f1 + · · · + wKfK is convex. We can generalize this result to the

integral F (x) =
∫
Y w(y)f(x,y)dy.

3. Pointwise supremum: If f(x,y) is convex in x for every fixed y ∈ Y , then the pointwise supremum

supy∈Y f(x,y) yields a convex function.
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4. Partial minimization: If f(x,y) is convex in (x,y) and C is a convex set then the function F (x) =

inf{f(x,y) : y ∈ C} is convex in x.

If f is differentiable then f is convex if and only if

f(y) ≥ f(x) +∇f(x)⊤(y − x) ∀x,y ∈ dom(f),

where the gradient ∇f is defined as

∇f(x) =

⎡

⎢⎢⎢⎣

∂f(x)
∂x1

· · ·
∂f(x)
∂xN

⎤

⎥⎥⎥⎦
.

For every instance of (P) we associate with it a dual problem defined as

maximize g(θ)

subject to θ ∈ RI
+,

(D)

where g(θ) = infx∈RN f0(x)+
∑

i∈[I] θifi(x). We can similarly define the optimal value of the maximization

problem (D) as sup (D).

Proposition 1. We have inf (P) ≥ sup (D).

Proof. For every x ∈ X and θ ∈ RI
+ we have

f0(x) ≥ f0(x) +
∑

i∈[I]

θifi(x),

since fi(x) ≤ 0, i ∈ [I]. Taking infimum over X on both sides, we find

inf (P) = inf{f0(x) : x ∈ X} ≥ inf
x∈X

f0(x) +
∑

i∈[I]

θifi(x)

≥ inf
x∈RN

f0(x) +
∑

i∈[I]

θifi(x) = g(θ),

where the second inequality holds because we have enlarged the feasible set of x from X to the full space

RN . As the arising inequality holds for any θ ∈ RI
+, the desired relation is thus obtained by taking the

supremum of the right-hand side expression. Thus the claim follows.

For convex optimization problems, we can often have strong duality where inf (P) = sup (D). A sufficient

condition is described in the following theorem.

Theorem 1 (Slater’s Constraint Qualification). Let I ⊆ [I] be the set of indices for which the functions fi,

i ∈ I, are non-affine in x. If there exists x such that fi(x) < 0, i ∈ I, and fi(x) ≤ 0, i ∈ [I] \ I, then

inf (P) = sup (D).
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A subclass of convex optimization problems that will be of particular interest to us is linear optimization

or linear programming (LP) problems, in which the functions f0 and fi, i ∈ [I], are affine in x. In this case,

we can without loss of generality define f0(x) = c⊤x and fi(x) = a⊤
i x−bi, i ∈ [I], for some problem specific

vectors c ∈ RN , ai ∈ RN , i ∈ [I], and scalars bi ∈ R, i ∈ [I]. This gives rise to the optimization problem

minimize c⊤x

subject to x ∈ RN

Ax ≤ b.

(P-LP)

To formulate the dual of this problem, we derive the explicit expression for g(θ) in (D)

g(θ) = inf
x∈RN

⎡

⎣c⊤x+
∑

i∈[I]

θia
⊤
i x−

∑

i∈[I]

θibi

⎤

⎦ = −b⊤θ + inf
x∈RN

⎡

⎣c⊤x+
∑

i∈[I]

θia
⊤
i x

⎤

⎦ .

The last minimization problem evaluates to −∞ if A⊤θ ̸= −c. Thus, for the dual problem (D) to be feasible,

necessarily we must have A⊤θ = −c. This yields the explicit dual linear optimization problem

maximize −b⊤θ

subject to θ ∈ RI
+

A⊤θ = −c.

(D-LP)

For linear optimization problems, feasibility of either the primal problem (P-LP) or the dual problem (D-LP)

is sufficient to guarantee strong duality.

Theorem 2 (LP Strong Duality). If there exists x ∈ RN such that Ax ≤ b or if there exists θ ∈ RI
+ such

that A⊤θ = −c then inf (P-LP) = sup (D-LP).

1.2 Probability Theory

In a random experiment, the sample space Ω is the set containing all posible outcomes ξ ∈ Ω. Typically,

we set Ω = RK . All subsets A ⊆ Ω are called events. A probability measure P assigns every event A ⊆ Ω

a probability P(ξ̃ ∈ A) ∈ [0, 1]. Without loss of generality, we may henceforth use the shorthand notation

P(A) = P(ξ̃ ∈ A). The probability measure P satisfies the following properties:

• P(Ω) = 1, P(∅) = 0.

• For any disjoint sets A,B ⊆ Ω, we have P(A ∪ B) = P(A) + P(B).

• Let Ac be the complement of A ⊆ Ω (i.e., A ∩ Ac = ∅ and A ∪ Ac = Ω). Then, P(A) + P(Ac) =

P(A ∪Ac) = P(Ω) = 1.

• If A ⊆ B ⊆ Ω, then P(A) ≤ P(B) and P(B \ A) = P(B)− P(A).
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• If A,B ⊆ Ω arbitrary, then P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

Definition 8 (Support). The smallest closed set Ξ ⊆ Ω such that P(Ξ) = 1 is called the support of ξ̃.

Definition 9 (Conditional Probability). If A,B ⊆ Ω are two events, then

P(A|B) = P(A ∩ B)
P(B)

is the conditional probability of A given B, which is well defined if P(B) > 0.

Definition 10 (Independence). If A,B ⊆ Ω are two events and P(A ∩ B) = P(A)P(B), then A and B are

called independent.

If A and B are independent then

P(A|B) = P(A)P(B)
P(B) = P(A).

Theorem 3 (Law of Total Probability). Let A1,A2, . . . ,AI be mutually exclusive and collectively exhaustive

events such that:

• Ai ∩Aj = ∅ for all i ̸= j.

• ∪i∈[I]Ai = Ω.

Then for any event B, we have

P(B) = P(B ∩A1) + · · ·+ P(B ∩AI)

= P(B|A1)P(A1) + · · ·+ P(B|AI)P(AI).

A discrete random variable ξ̃ is described by a finite number of scenarios ξ1, . . . , ξS with occurence

probabilities p1, . . . , pS , that satisfies
∑

s∈[S] ps = 1 and

ps = P(ξ̃ = ξs) ∀s ∈ [S].

A continuous random variable ξ̃ is described by a probability density function p(ξ) satisfying

P(A) =

∫

A
p(ξ)dξ,

for any events A ⊆ Ω. Two discrete univariate random variables ξ̃1 and ξ̃2 are called independent if the

probability of any outcome factors into the form

ps(ξ) = px(ξ1,s)py(ξ2,s).

Two continuous univariate random variables ξ̃1 and ξ̃2 are called independent if the joint density function

factors into the form

p(ξ) = px(ξ1)py(ξ2).
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Definition 11 (Expectation). Expectation of a univariate random variable ξ̃ is defined as

EP[ξ̃] =
∫

Ω
ξ P(dξ). (1.1)

For a discrete random variable the expectation (1.1) reduces to
∑

s∈[S] psξs while for a continuous random

variable it reduces to
∫
Ω ξ p(ξ)dξ.

Definition 12 (Generalized Expectation). For a function f : RK → R of a random vector ξ̃, its expectation

is given by

EP[f(ξ̃)] =
∫

Ω
f(ξ) P(dξ).

Definition 13 (Variance). Variance of a random variable ξ̃ is defined as

Var(ξ̃) = EP

[(
ξ̃ − EP[ξ̃]

)2
]
,

while its standard deviation is defined as σ(ξ̃) =
√
Var(ξ̃).

Definition 14 (Covariance). Covariance of two random variables ξ̃1 and ξ̃2 is defined as

Cov(ξ̃1, ξ̃2) = EP
[(

ξ̃1 − EP[ξ̃1]
)(

ξ̃2 − EP[ξ̃2]
)]

,

while their correlation is defined as

ρ(ξ̃1, ξ̃2) =
Cov(ξ̃1, ξ̃2)

σ(ξ̃1)σ(ξ̃2)
.

If ξ̃1 and ξ̃2 are independent, then they are uncorrelated.

A continuous univariate random variable ξ̃ is said to be normal (or has a normal distribution) if its

probability density function is of the form

p(ξ) =
1√
2π

e−
1

2σ2 (ξ−µ)2 .

We have E[ξ̃] = µ and Var(ξ̃) = σ2. A standard normal random variable is a random variable that has a

normal distribution with µ = 0 and σ = 1. To express that ξ̃ is a normal random variable with mean µ and

variance σ2, we use the shorthand notation:

ξ̃ ∼ N (µ,σ2).

Let ξ̃1, ξ̃2, ξ̃3, . . . be an infinite sequence of independent and identically distributed (i.i.d.) random vari-

ables, each with an expected value µ. The strong law of large numbers (SLLN) asserts that

P

⎛

⎝ lim
I→∞

1

I

∑

i∈[I]

ξ̃i = µ

⎞

⎠ = 1.
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Let ξ̃1, ξ̃2, ξ̃3, . . . be an infinite sequence of independent and identically distributed (i.i.d.) random vari-

ables, each with expected value µ and variance σ2. Define χ̃I =
∑

i∈[I] ξ̃i. Note that E[χ̃I ] = I × µ

and Var(χ̃I) = I × σ2. The Central Limit Theorem (CLT) states that for large I the random vari-

able (χ̃I − Iµ)/(σ
√
I) is approximately standard normally distributed. More precisely, letting ξ̃ ∼ N (0, 1),

we have

P
(
χ̃I − Iµ

σ
√
I)

≤ r

)
→ P(ξ̃ ≤ r) as I → ∞ (∀r ∈ R).

1.3 Using YALMIP and MOSEK

YALMIP is a modeling language for convex optimization problems. Using YALMIP, one can interface

MATLAB with various off-the-shelf solvers (CPLEX, GUROBI, MOSEK, etc.). YALMIP can be downloaded

from http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Main.Download. The installation manual

can be found at http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Tutorials.Installation.

We also need an optimization solver. In this course, we shall utilize MOSEK (https://mosek.com/)

which is excellent for solving generic conic programs. MOSEK has free academic license which can be

requested online from https://license.mosek.com/academic/.

To this end, let us try to use the YALMIP and MOSEK combination to solve a simple mean-variance

portfolio optimization given by:

minimize λw⊤Σw − (1− λ)µ⊤w

subject to w ∈ RN
+

e⊤w = 1.

An example of implementation of the mean-variance portfolio optimization problem in YALMIP is given as

follows.

Listing 1.1. Mean-Variance Optimization

clear a l l

yalmip clear

opt ions = sdp s e t t i n g s ( ’ verbose ’ , 0 , ’ dua l i z e ’ , 0 , ’ s o l v e r ’ , ’mosek ’ ) ;

N = 3 ; % number o f a s s e t s

mu = [ 1 0 ; 20 ; 3 0 ] ; % mean re turns

sigma = 0.3∗mu; % std d e v i a t i o n s

corr mat = gallery ( ’ randcorr ’ ,N) ; % co r r e l a t i o n matrix

Sigma = diag ( sigma )∗ corr mat ∗diag ( sigma ) ; % covar iance matrix
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lambdas = [ 0 : 0 . 1 : 1 ] ;

va r i anc e s = zeros ( length ( lambdas ) , 1 ) ;

means = zeros ( length ( lambdas ) , 1 ) ;

for i =1: length ( lambdas )

lambda = lambdas ( i ) ;

w = sdpvar (N, 1 ) ; % dec i s i on v a r i a b l e

obj = lambda∗w’∗ Sigma∗w − (1−lambda )∗mu’∗w; % ob j e c t i v e va lue

% genera te the c on s t r a i n t s

c on s t r a i n t s = {} ;

c o n s t r a i n t s {end+1} = w >= 0 ;

c on s t r a i n t s {end+1} = sum(w) == 1 ;

% so l v e the problem

opt imize ( [ c o n s t r a i n t s { : } ] , obj ) ;

% c o l l e c t the ou tpu t s

va r i anc e s ( i ) = double (w’∗ Sigma∗w) ;

means ( i ) = double (mu’∗w) ;

end

% p l o t the e f f i c i e n t f r o n t i e r

plot ( var iances , means ) ;

xlabel ( ’ Variance ’ ) ;

ylabel ( ’ Expected Return ’ ) ;
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